ﻻ يوجد ملخص باللغة العربية
The landscape of black hole (BH) formation -- which massive stars explode as core-collapse supernovae (CCSN) and which implode to BHs -- profoundly affects the IMF-averaged nucleosynthetic yields of a stellar population. Building on the work of Sukhbold et al. (2016), we compute IMF-averaged yields at solar metallicity for a wide range of assumptions, including neutrino-driven engine models with extensive BH formation, models with a simple mass threshold for BH formation, and a model in which all stars from $8-120 text{M}_{odot}$ explode. For plausible choices, the overall yields of $alpha$-elements span a factor of three, but changes in relative yields are more subtle, typically $0.05-0.2$ dex. For constraining the overall level of BH formation, ratios of C and N to O or Mg are promising diagnostics. For distinguishing complex, theoretically motivated landscapes from simple mass thresholds, abundance ratios involving Mn or Ni are promising because of their sensitivity to the core structure of the CCSN progenitors. We confirm previous findings of a substantial (factor $2.5-4$) discrepancy between predicted O/Mg yield ratios and observationally inferred values, implying that models either overproduce O or underproduce Mg. No landscape choice achieves across-the-board agreement with observed abundance ratios; the discrepancies offer empirical clues to aspects of massive star evolution or explosion physics still missing from the models. We find qualitatively similar results using the massive star yields of Limongi & Chieffi (2018). We provide tables of IMF-integrated yields for several landscape scenarios, and more flexible user-designed models can be implemented through the publicly available $texttt{Versatile Integrator for Chemical Evolution}$ ($texttt{VICE}$; https://pypi.org/project/vice/).
Observations of quasars at $ z > 6$ suggest the presence of black holes with a few times $rm 10^9 ~M_{odot}$. Numerous models have been proposed to explain their existence including the direct collapse which provides massive seeds of $rm 10^5~M_{odot
Supernovae (SNe) are considered to have a major role in dust enrichment of high redshift galaxies and, due to the short lifetimes of interstellar grains, in dust replenishment of local galaxies. Here we explore how SN dust yields depend on the mass,
The failed supernova N6946-BH1 likely formed a black hole (BH); we age-date the surrounding population and infer an age and initial mass for the progenitor of this BH formation candidate. First, we use archival Hubble Space Telescope imaging to extra
Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an abort
We perform a binary population synthesis calculation incorporating very massive population (Pop.) III stars up to 1500 $M_odot$, and investigate the nature of binary black hole (BBH) mergers. Above the pair-instability mass gap, we find that the typi