ﻻ يوجد ملخص باللغة العربية
Supernovae (SNe) are considered to have a major role in dust enrichment of high redshift galaxies and, due to the short lifetimes of interstellar grains, in dust replenishment of local galaxies. Here we explore how SN dust yields depend on the mass, metallicity, and rotation rate of the progenitor stars, and on the properties of the explosion. To this aim, assuming uniform mixing inside the ejecta, we quantify the dust mass produced by a sample of SN models with progenitor masses $13~M_{odot} leq M leq 120~M_{odot}$, metallicity $rm -3 leq [Fe/H] leq 0$, rotation rate $rm v_{rm rot} = 0$ and $300$~km/s, that explode with a fixed energy of $1.2 times 10^{51}$~erg (FE models) or with explosion properties calibrated to reproduce the $rm ^{56}Ni$ - $M$ relation inferred from SN observations (CE models). We find that rotation favours more efficient dust production, particularly for more massive, low metallicity stars, but that metallicity and explosion properties have the largest effects on the dust mass and its composition. In FE models, SNe with $M leq 20 - 25 ~M_{odot}$ are more efficient at forming dust: between 0.1 and 1 $M_odot$ is formed in a single explosion, with a composition dominated by silicates, carbon and magnetite grains when $rm [Fe/H] = 0$, and by carbon and magnetite grains when $rm [Fe/H] < 0$. In CE models, the ejecta are massive and metal-rich and dust production is more efficient. The dust mass increases with $M$ and it is dominated by silicates, at all [Fe/H].
The landscape of black hole (BH) formation -- which massive stars explode as core-collapse supernovae (CCSN) and which implode to BHs -- profoundly affects the IMF-averaged nucleosynthetic yields of a stellar population. Building on the work of Sukhb
We investigate the condition for the formation of low-mass second-generation stars in the early universe. It has been proposed that gas cooling by dust thermal emission can trigger fragmentation of a low-metallicity star-forming gas cloud. In order t
Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condense
Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an abort
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, an