ﻻ يوجد ملخص باللغة العربية
We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $mathbb{R}^3$. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $K_5$, $K_{5,81}$, or any nonplanar $3$-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $K_{4,4}$, and $K_{3,5}$ can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable $n$-vertex graphs is in $Omega(n log n)$. From the non-realizability of $K_{5,81}$, we obtain that any realizable $n$-vertex graph has $O(n^{9/5})$ edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.
Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work we define a combinatorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary
In 1960, Hoffman and Singleton cite{HS60} solved a celebrated equation for square matrices of order $n$, which can be written as $$ (kappa - 1) I_n + J_n - A A^{rm T} = A$$ where $I_n$, $J_n$, and $A$ are the identity matrix, the all one matrix, and
We prove that any finite polyhedral manifold in 3D can be continuously flattened into 2D while preserving intrinsic distances and avoiding crossings, answering a 19-year-old open problem, if we extend standard folding models to allow for countably in
It is well known that spectral Tur{a}n type problem is one of the most classical {problems} in graph theory. In this paper, we consider the spectral Tur{a}n type problem. Let $G$ be a graph and let $mathcal{G}$ be a set of graphs, we say $G$ is texti
Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics.