ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose-Hubbard model on polyhedral graphs

171   0   0.0 ( 0 )
 نشر من قبل Santi Prestipino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Santi Prestipino




اسأل ChatGPT حول البحث

Ever since the first observation of Bose-Einstein condensation in the nineties, ultracold quantum gases have been the subject of intense research, providing a unique tool to understand the behavior of matter governed by the laws of quantum mechanics. Ultracold bosonic atoms loaded in an optical lattice are usually described by the Bose-Hubbard model or a variant of it. In addition to the common insulating and superfluid phases, other phases (like density waves and supersolids) may show up in the presence of a short-range interparticle repulsion and also depending on the geometry of the lattice. We herein explore this possibility, using the graph of a convex polyhedron as lattice and playing with the coordination of nodes to promote the wanted finite-size ordering. To accomplish the job we employ the method of decoupling approximation, whose efficacy is tested in one case against exact diagonalization. We report zero-temperature results for two Catalan solids, the tetrakis hexahedron and the pentakis dodecahedron, for which a thorough ground-state analysis reveals the existence of insulating phases with polyhedral order and a widely extended supersolid region. The key to this outcome is the unbalance in coordination between inequivalent nodes of the graph. The predicted phases can be probed in systems of ultracold atoms using programmable holographic optical tweezers.


قيم البحث

اقرأ أيضاً

The implementation of a combination of continuous weak measurement and classical feedback provides a powerful tool for controlling the evolution of quantum systems. In this work, we investigate the potential of this approach from three perspectives. First, we consider a double-well system in the classical large-atom-number limit, deriving the exact equations of motion in the presence of feedback. Second, we consider the same system in the limit of small atom number, revealing the effect that quantum fluctuations have on the feedback scheme. Finally, we explore the behavior of modest sized Hubbard chains using exact numerics, demonstrating the near-deterministic preparation of number states, a tradeoff between local and non-local feedback for state preparation, and evidence of a feedback-driven symmetry-breaking phase transition.
122 - S. Baier , M. J. Mark , D. Petter 2015
The Hubbard model underlies our understanding of strongly correlated materials. While its standard form only comprises interaction between particles at the same lattice site, its extension to encompass long-range interaction, which activates terms ac ting between different sites, is predicted to profoundly alter the quantum behavior of the system. We realize the extended Bose-Hubbard model for an ultracold gas of strongly magnetic erbium atoms in a three-dimensional optical lattice. Controlling the orientation of the atomic dipoles, we reveal the anisotropic character of the onsite interaction and hopping dynamics, and their influence on the superfluid-to-Mott insulator quantum phase transition. Moreover, we observe nearest-neighbor interaction, which is a genuine consequence of the long-range nature of dipolar interactions. Our results lay the groundwork for future studies of novel exotic many-body quantum phases.
An exciting development in the field of correlated systems is the possibility of realizing two-dimensional (2D) phases of quantum matter. For a systems of bosons, an example of strong correlations manifesting themselves in a 2D environment is provide d by helium adsorbed on graphene. We construct the effective Bose-Hubbard model for this system which involves hard-core bosons $(Uapproxinfty)$, repulsive nearest-neighbor $(V>0)$ and small attractive $(V<0)$ next-nearest neighbor interactions. The mapping onto the Bose-Hubbard model is accomplished by a variety of many-body techniques which take into account the strong He-He correlations on the scale of the graphene lattice spacing. Unlike the case of dilute ultracold atoms where interactions are effectively point-like, the detailed microscopic form of the short range electrostatic and long range dispersion interactions in the helium-graphene system are crucial for the emergent Bose-Hubbard description. The result places the ground state of the first layer of $^4$He adsorbed on graphene deep in the commensurate solid phase with $1/3$ of the sites on the dual triangular lattice occupied. Because the parameters of the effective Bose-Hubbard model are very sensitive to the exact lattice structure, this opens up an avenue to tune quantum phase transitions in this solid-state system.
169 - R.A. Henry , J.Q. Quach , C-H. Su 2014
Ultracold atoms in optical lattices provide a unique opportunity to study Bose- Hubbard physics. In this work we show that by considering a spatially varying onsite interaction it is possible to manipulate the motion of excitations above the Mott pha se in a Bose-Hubbard system. Specifically, we show that it is possible to engineer regimes where excitations will negatively refract, facilitating the construction of a flat lens.
We construct a basis for the many-particle ground states of the positive hopping Bose-Hubbard model on line graphs of finite 2-connected planar bipartite graphs at sufficiently low filling factors. The particles in these states are localized on non-i ntersecting vertex-disjoint cycles of the line graph which correspond to non-intersecting edge-disjoint cycles of the original graph. The construction works up to a critical filling factor at which the cycles are close-packed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا