ﻻ يوجد ملخص باللغة العربية
The ellipses model is a continuum percolation process in which ellipses with random orientation and eccentricity are placed in the plane according to a Poisson point process. A parameter $alpha$ controls the tail distribution of the major axis distribution and we focus on the regime $alpha in (1,2)$ for which there exists a unique infinite cluster of ellipses and this cluster fulfills the so called highway property. We prove that the distance within this infinite cluster behaves asymptotically like the (unrestricted) Euclidean distance in the plane. We also show that the chemical distance between points $x$ and $y$ behaves roughly as $c loglog |x-y|$.
We define a continuum percolation model that provides a collection of random ellipses on the plane and study the behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appe
Scale-free percolation is a spatial random graph model with vertex set $mathbb{Z}^d$. Vertices $x$ and $y$ are connected with probability depending on i.i.d. vertex weights and the Euclidean distance. Depending on the various parameters involved, we
The non-random fluctuation is one of the central objects in first passage percolation. It was proved in [Shuta Nakajima. Divergence of non-random fluctuation in First Passage Percolation. {em Electron. Commun. Probab.} 24 (65), 1-13. 2019.] that for
We consider instances of long-range percolation on $mathbb Z^d$ and $mathbb R^d$, where points at distance $r$ get connected by an edge with probability proportional to $r^{-s}$, for $sin (d,2d)$, and study the asymptotic of the graph-theoretical (a.
We consider first-passage percolation with i.i.d. non-negative weights coming from some continuous distribution under a moment condition. We review recent results in the study of geodesics in first-passage percolation and study their implications for