ﻻ يوجد ملخص باللغة العربية
We consider first-passage percolation with i.i.d. non-negative weights coming from some continuous distribution under a moment condition. We review recent results in the study of geodesics in first-passage percolation and study their implications for the multi-type Richardson model. In two dimensions this establishes a dual relation between the existence of infinite geodesics and coexistence among competing types. The argument amounts to making precise the heuristic that infinite geodesics can be thought of as `highways to infinity. We explain the limitations of the current techniques by presenting a partial result in dimensions higher than two.
We study first-passage percolation where edges in the left and right half-planes are assigned values according to different distributions. We show that the asymptotic growth of the resulting inhomogeneous first-passage process obeys a shape theorem,
The non-random fluctuation is one of the central objects in first passage percolation. It was proved in [Shuta Nakajima. Divergence of non-random fluctuation in First Passage Percolation. {em Electron. Commun. Probab.} 24 (65), 1-13. 2019.] that for
We study the time constant $mu(e_{1})$ in first passage percolation on $mathbb Z^{d}$ as a function of the dimension. We prove that if the passage times have finite mean, $$lim_{d to infty} frac{mu(e_{1}) d}{log d} = frac{1}{2a},$$ where $a in [0,inf
We consider first passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly
Large deviations in the context of first-passage percolation was first studied in the early 1980s by Grimmett and Kesten, and has since been revisited in a variety of studies. However, none of these studies provides a precise relation between the exi