ترغب بنشر مسار تعليمي؟ اضغط هنا

ALADIN: All Layer Adaptive Instance Normalization for Fine-grained Style Similarity

248   0   0.0 ( 0 )
 نشر من قبل Dan Ruta
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ALADIN (All Layer AdaIN); a novel architecture for searching images based on the similarity of their artistic style. Representation learning is critical to visual search, where distance in the learned search embedding reflects image similarity. Learning an embedding that discriminates fine-grained variations in style is hard, due to the difficulty of defining and labelling style. ALADIN takes a weakly supervised approach to learning a representation for fine-grained style similarity of digital artworks, leveraging BAM-FG, a novel large-scale dataset of user generated content groupings gathered from the web. ALADIN sets a new state of the art accuracy for style-based visual search over both coarse labelled style data (BAM) and BAM-FG; a new 2.62 million image dataset of 310,000 fine-grained style groupings also contributed by this work.



قيم البحث

اقرأ أيضاً

This paper addresses the problem of model compression via knowledge distillation. To this end, we propose a new knowledge distillation method based on transferring feature statistics, specifically the channel-wise mean and variance, from the teacher to the student. Our method goes beyond the standard way of enforcing the mean and variance of the student to be similar to those of the teacher through an $L_2$ loss, which we found it to be of limited effectiveness. Specifically, we propose a new loss based on adaptive instance normalization to effectively transfer the feature statistics. The main idea is to transfer the learned statistics back to the teacher via adaptive instance normalization (conditioned on the student) and let the teacher network evaluate via a loss whether the statistics learned by the student are reliably transferred. We show that our distillation method outperforms other state-of-the-art distillation methods over a large set of experimental settings including different (a) network architectures, (b) teacher-student capacities, (c) datasets, and (d) domains.
150 - Jun Ling , Han Xue , Li Song 2021
Image composition plays a common but important role in photo editing. To acquire photo-realistic composite images, one must adjust the appearance and visual style of the foreground to be compatible with the background. Existing deep learning methods for harmonizing composite images directly learn an image mapping network from the composite to the real one, without explicit exploration on visual style consistency between the background and the foreground images. To ensure the visual style consistency between the foreground and the background, in this paper, we treat image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets show the superior capability of the proposed method. Code is available at {https://github.com/junleen/RainNet}.
Artistic style transfer aims to transfer the style characteristics of one image onto another image while retaining its content. Existing approaches commonly leverage various normalization techniques, although these face limitations in adequately tran sferring diverse textures to different spatial locations. Self-Attention-based approaches have tackled this issue with partial success but suffer from unwanted artifacts. Motivated by these observations, this paper aims to combine the best of both worlds: self-attention and normalization. That yields a new plug-and-play module that we name Self-Attentive Factorized Instance Normalization (SAFIN). SAFIN is essentially a spatially adaptive normalization module whose parameters are inferred through attention on the content and style image. We demonstrate that plugging SAFIN into the base network of another state-of-the-art method results in enhanced stylization. We also develop a novel base network composed of Wavelet Transform for multi-scale style transfer, which when combined with SAFIN, produces visually appealing results with lesser unwanted textures.
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regi ons distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters. Our code and datasets are available at https://github.com/taki0112/UGATIT or https://github.com/znxlwm/UGATIT-pytorch.
How to model fine-grained spatial-temporal dynamics in videos has been a challenging problem for action recognition. It requires learning deep and rich features with superior distinctiveness for the subtle and abstract motions. Most existing methods generate features of a layer in a pure feedforward manner, where the information moves in one direction from inputs to outputs. And they rely on stacking more layers to obtain more powerful features, bringing extra non-negligible overheads. In this paper, we propose an Adaptive Recursive Circle (ARC) framework, a fine-grained decorator for pure feedforward layers. It inherits the operators and parameters of the original layer but is slightly different in the use of those operators and parameters. Specifically, the input of the layer is treated as an evolving state, and its update is alternated with the feature generation. At each recursive step, the input state is enriched by the previously generated features and the feature generation is made with the newly updated input state. We hope the ARC framework can facilitate fine-grained action recognition by introducing deeply refined features and multi-scale receptive fields at a low cost. Significant improvements over feedforward baselines are observed on several benchmarks. For example, an ARC-equipped TSM-ResNet18 outperforms TSM-ResNet50 with 48% fewer FLOPs and 52% model parameters on Something-Something V1 and Diving48.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا