ﻻ يوجد ملخص باللغة العربية
This paper focuses on mixing strategies to enhance the growth rate in an algal raceway system. A mixing device, such as a paddle wheel, is considered to control the rearrangement of the depth of the algae cultures hence the light perceived at each lap. The dynamics of the photosystems after a rearrangement is accounted for by the Han model. Our approach consists in considering permanent regimes where the strategy is parametrized by a permutation matrix which modifies the order of the layers at the beginning of each lap. It is proven that the dynamics of the photosystems is then periodic, with a period corresponding to one lap of the raceway whatever the order of the considered permutation matrix is. An objective function related to the average growth rate over one lap is then introduced. Since N ! permutations (N being the number of considered layers) need to be tested in the general case, it can be numerically solved only for a limited number of layers. Consequently, we propose a second optimization problem associated with a suboptimal solution of the initial problem, which can be determined explicitly. A sufficient condition to characterize cases where the two problems have the same solution is given. Some numerical experiments are performed to assess the benefit of optimal strategies in various settings.
We consider a coupled physical-biological model describing growth of microalgae in a raceway pond cultivation process, accounting for hydrodynamics. Our approach combines a biological model (based on the Han model) and shallow water dynamics equation
This paper focuses on mixing strategies to enhance the growth of microalgae in a raceway pond. The flow is assumed to be laminar and the Han model describing the dynamics of the photosystems is used as a basis to determine growth rate as a function o
The potential of industrial applications for microalgae has motivated their recent fast development. Their growth dynamics depends on different factors that must be optimized. Since they get their energy from photosynthesis, light is a key factor tha
This paper focuses on mixing strategies and designing shape of the bottom topographies to enhance the growth of the microalgae in raceway ponds. A physical-biological coupled model is used to describe the growth of the algae. A simple model of a mixi
Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. We propos