ﻻ يوجد ملخص باللغة العربية
We consider a coupled physical-biological model describing growth of microalgae in a raceway pond cultivation process, accounting for hydrodynamics. Our approach combines a biological model (based on the Han model) and shallow water dynamics equations that model the fluid into the raceway pond. We present an optimization procedure dealing with the topography to maximize the biomass production over one lap or multiple laps with a paddle wheel. On the contrary to a widespread belief in the microalgae field, the results show that a flat topography is optimal in a periodic regime. In other frameworks, non-trivial topographies can be obtained. We present some of them, e.g., when a mixing device is included in the model.
This paper focuses on mixing strategies to enhance the growth rate in an algal raceway system. A mixing device, such as a paddle wheel, is considered to control the rearrangement of the depth of the algae cultures hence the light perceived at each la
This paper focuses on mixing strategies and designing shape of the bottom topographies to enhance the growth of the microalgae in raceway ponds. A physical-biological coupled model is used to describe the growth of the algae. A simple model of a mixi
This paper focuses on mixing strategies to enhance the growth of microalgae in a raceway pond. The flow is assumed to be laminar and the Han model describing the dynamics of the photosystems is used as a basis to determine growth rate as a function o
We study an optimization problem that aims to determine the shape of an obstacle that is submerged in a fluid governed by the Stokes equations. The mentioned flow takes place in a channel, which motivated the imposition of a Poiseuille-like input fun
Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. We propos