ترغب بنشر مسار تعليمي؟ اضغط هنا

Aromatics and Cyclic Molecules in Molecular Clouds: A New Dimension of Interstellar Organic Chemistry

77   0   0.0 ( 0 )
 نشر من قبل Brett McGuire
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrochemistry lies at the nexus of astronomy, chemistry, and molecular physics. On the basis of precise laboratory data, a rich collection of more than 200 familiar and exotic molecules have been identified in the interstellar medium, the vast majority by their unique rotational fingerprint. Despite this large body of work, there is scant evidence in the radio band for the basic building blocks of chemistry on earth -- five and six-membered rings -- despite long standing and sustained efforts during the past 50 years. In contrast, a peculiar structural motif, highly unsaturated carbon in a chain-like arrangement, is instead quite common in space. The recent astronomical detection of cyanobenzene, the simplest aromatic nitrile, in the dark molecular cloud TMC-1, and soon afterwards in additional pre-stellar, and possibly protostellar sources, establishes that aromatic chemistry is likely widespread in the earliest stages of star formation. The subsequent discovery of cyanocyclopentadienes and even cyanonapthlenes in TMC-1 provides further evidence that organic molecules of considerable complexity are readily synthesized in regions with high visual extinction but where the low temperature and pressure are remarkably low. This review focuses on laboratory efforts now underway to understand the rich transition region between linear and planar carbon structures using microwave spectroscopy. We present key features, advantages, and disadvantages of current detection methods, a discussion of the types of molecules found in space and in the laboratory, and approaches under development to identify entirely new species in complex mixtures. Studies focusing on the cyanation of hydrocarbons and the formation of benzene from acyclic precursors are highlighted, as is the role that isotopic studies might play in elucidating the chemical pathways to ring formation.

قيم البحث

اقرأ أيضاً

403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation fiel d, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
Stars and planets are formed inside dense interstellar molecular clouds, by processes imprinted on the 3-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging, due to projection effects and difficulties measuring their extent along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. Musca is found to be vibrating globally, with the characteristic modes of a sheet viewed edge-on, not a filament as previously supposed. We reconstruct the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheet-like morphology.
We have analysed the chemical and kinematic properties of the 20 and 50 km s$^{-1}$ molecular clouds in the Central Molecular Zone of the Milky Way Galaxy, as well as those of the molecular ridge bridging these two clouds. Our work has utilized 37 mo lecular transitions in the 0.65, 3 and 7-mm wavebands, from the Mopra and NANTEN2 telescopes. The 0.65-mm NANTEN2 data highlights a dense condensation of emission within the western part of the 20 km s$^{-1}$ cloud, visible in only four other transitions, which are 3-mm H$^{13}$CN (1--0), H$^{13}$CO$^{+}$ (1--0), HNC (1--0) and N$_{2}$H$^{+}$ (1--0), suggesting that the condensation is moderately optically thick and cold. We find that while the relative chemical abundances between both clouds are alike in many transitions, suggesting little variation in the chemistry between both clouds; the 20 km s$^{-1}$, cold cloud is brighter than the 50 km s$^{-1}$ cloud in shock and high density tracers. The spatial distribution of enhanced emission is widespread in the 20 km s$^{-1}$ cloud, as shown via line ratio maps. The position velocity diagrams across both clouds indicate that the gas is well mixed. We show that the molecular ridge is most likely part of the 20 km s$^{-1}$ cloud and that both of them may possibly extend to include the 50 km s$^{-1}$ cloud, as part of one larger cloud. Furthermore, we expect that the 20 km s$^{-1}$ cloud is being tidally sheared as a result of the gravitational potential from Sgr A*.
Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than 6 atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. We aim at detecting for the first time the CO-H2 van der Waals complex in the ISM, which if detected can be a sensitive indicator for low temperatures. We use the IRAM30m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of 10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band have been observed with a spectral resolution of 0.5-0.7 km/s, reaching a rms noise level of 2 mK. The simultaneous observation of a broad frequency band, 16 GHz, has allowed us to conduct a serendipitous spectral line survey. No lines belonging to the CO-H2 complex have been detected. We have set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] = 5x10^{-6}, while we expect the abundance of the complex to be in the range 10^{-8}-10^{-3}. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, e.g. methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH) and ketene (CH2CO), associated with cold gas (excitation temperatures about 7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes.
53 - Karin I. Oberg 2016
The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and o ther volatiles) are exposed to UV photons and other sources of dissociative radiation, and, if sufficiently mobile, the radicals can react to form larger, more complex molecules. The resulting complex organic molecules (COMs) accompany star and planet formation, and may eventually seed the origins of life on nascent planets. Experiments of increasing sophistication have demonstrated that known interstellar COMs as well as the prebiotically interesting amino acids can form through ice photochemistry. We review these experiments and discuss the qualitative and quantitative kinetic and mechanistic constraints they have provided. We finally compare the effects of UV radiation with those of three other potential sources of radical production and chemistry in interstellar ices: electrons, ions and X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا