ﻻ يوجد ملخص باللغة العربية
We prove that the Gram--Schmidt orthogonalization process can be carried out in Hilbert modules over Clifford algebras, in spite of the un-invertibility and the un-commutativity of general Clifford numbers. Then we give two crucial applications of the orthogonalization method. One is to give a constructive proof of existence of an orthonormal basis of the inner spherical monogenics of order $k$ for each $kinmathbb{N}.$ The second is to formulate the Clifford Takenaka--Malmquist systems, or in other words, the Clifford rational orthogonal systems, as well as define Clifford Blaschke product functions, in both the unit ball and the half space contexts. The Clifford TM systems then are further used to establish an adaptive rational approximation theory for $L^2$ functions on the sphere and in $mathbb{R}^m.$
We study submodules of analytic Hilbert modules defined over certain algebraic varieties in bounded symmetric domains, the so-called Jordan-Kepler varieties $V_ell$ of arbitrary rank $ell.$ For $ell>1$ the singular set of $V_ell$ is not a complete in
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
We give two new global and algorithmic constructions of the reproducing kernel Hilbert space associated to a positive definite kernel. We further present ageneral positive definite kernel setting using bilinear forms, and we provide new examples. Our
The use of bundle gerbes and bundle gerbe modules is considered as a replacement for the usual theory of Clifford modules on manifolds that fail to be spin. It is shown that both sides of the Atiyah-Singer index formula for coupled Dirac operators ca
Let $mathcal{H}$ be a complex separable Hilbert space. We prove that if ${f_{n}}_{n=1}^{infty}$ is a Schauder basis of the Hilbert space $mathcal{H}$, then the angles between any two vectors in this basis must have a positive lower bound. Furthermore