ﻻ يوجد ملخص باللغة العربية
We study submodules of analytic Hilbert modules defined over certain algebraic varieties in bounded symmetric domains, the so-called Jordan-Kepler varieties $V_ell$ of arbitrary rank $ell.$ For $ell>1$ the singular set of $V_ell$ is not a complete intersection. Hence the usual monoidal transformations do not suffice for the resolution of the singularities. Instead, we describe a new higher rank version of the blow-up process, defined in terms of Jordan algebraic determinants, and apply this resolution to obtain the rigidity of the submodules vanishing on the singular set.
We prove that the Gram--Schmidt orthogonalization process can be carried out in Hilbert modules over Clifford algebras, in spite of the un-invertibility and the un-commutativity of general Clifford numbers. Then we give two crucial applications of th
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over $C^*$-algebras are the natural settings for a generalization of coherent state
In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call no
We prove that an arbitrary (not necessarily countably generated) Hilbert $G$-$cla$ module on a G-C^* algebra $cla$ admits an equivariant embedding into a trivial $G-cla$ module, provided G is a compact Lie group and its action on $cla$ is ergodic.
A group $G$ is called Jordan if there is a positive integer $J=J_G$ such that every finite subgroup $mathcal{B}$ of $G$ contains a commutative subgroup $mathcal{A}subset mathcal{B}$ such that $mathcal{A}$ is normal in $mathcal{B}$ and the index $[mat