ترغب بنشر مسار تعليمي؟ اضغط هنا

Identify Hidden Spreaders of Pandemic over Contact Tracing Networks

94   0   0.0 ( 0 )
 نشر من قبل Jiarong Xie
 تاريخ النشر 2021
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The COVID-19 infection cases have surged globally, causing devastations to both the society and economy. A key factor contributing to the sustained spreading is the presence of a large number of asymptomatic or hidden spreaders, who mix among the susceptible population without being detected or quarantined. Here we propose an effective non-pharmacological intervention method of detecting the asymptomatic spreaders in contact-tracing networks, and validated it on the empirical COVID-19 spreading network in Singapore. We find that using pure physical spreading equations, the hidden spreaders of COVID-19 can be identified with remarkable accuracy. Specifically, based on the unique characteristics of COVID-19 spreading dynamics, we propose a computational framework capturing the transition probabilities among different infectious states in a network, and extend it to an efficient algorithm to identify asymptotic individuals. Our simulation results indicate that a screening method using our prediction outperforms machine learning algorithms, e.g. graph neural networks, that are designed as baselines in this work, as well as random screening of infections closest contacts widely used by China in its early outbreak. Furthermore, our method provides high precision even with incomplete information of the contract-tracing networks. Our work can be of critical importance to the non-pharmacological interventions of COVID-19, especially with increasing adoptions of contact tracing measures using various new technologies. Beyond COVID-19, our framework can be useful for other epidemic diseases that also feature asymptomatic spreading



قيم البحث

اقرأ أيضاً

We present an evaluation of the effectiveness of manual contact tracing compared to bulletin board contact tracing. We show that bulletin board contact tracing gives comparable results in terms of the reproductive number, duration, prevalence and inc idence but is less resource intensive, easier to implement and offers a wider range of privacy options. Classical contact tracing focuses on contacting individuals whom an infectious person has been in proximity to. A bulletin board approach focuses on identifying locations visited by an infectious person, and then contacting those who were at those locations. We present results comparing their effects on the overall reproductive number as well as the incidence and prevalence of disease. We evaluate them by building a new discrete time stochastic model based on the Susceptible Exposed Infectious and Recovered (SEIR) framework for disease spread. We conduct simulation experiments to quantify the effectiveness of these two models of contact tracing by calibrating the model to be compatible with SARS-CoV-2. Our experiments show that location-based bulletin board contact tracing can improve manual contact tracing.
214 - Qi Zeng , Ying Liu , Liming Pan 2021
Identifying the most influential spreaders is important to understand and control the spreading process in a network. As many real-world complex systems can be modeled as multilayer networks, the question of identifying important nodes in multilayer network has attracted much attention. Existing studies focus on the multilayer network structure, while neglecting how the structural and dynamical coupling of multiple layers influence the dynamical importance of nodes in the network. Here we investigate on this question in an information-disease coupled spreading dynamics on multiplex networks. Firstly, we explicitly reveal that three interlayer coupling factors, which are the two-layer relative spreading speed, the interlayer coupling strength and the two-layer degree correlation, significantly impact the spreading influence of a node on the contact layer. The suppression effect from the information layer makes the structural centrality on the contact layer fail to predict the spreading influence of nodes in the multiplex network. Then by mapping the coevolving spreading dynamics into percolation process and using the message-passing approach, we propose a method to calculate the size of the disease outbreaks from a single seed node, which can be used to estimate the nodes spreading influence in the coevolving dynamics. Our work provides insights on the importance of nodes in the multiplex network and gives a feasible framework to investigate influential spreaders in the asymmetrically coevolving dynamics.
In the past few decades, the frequency of pandemics has been increased due to the growth of urbanization and mobility among countries. Since a disease spreading in one country could become a pandemic with a potential worldwide humanitarian and econom ic impact, it is important to develop models to estimate the probability of a worldwide pandemic. In this paper, we propose a model of disease spreading in a structural modular complex network (having communities) and study how the number of bridge nodes $n$ that connect communities affects disease spread. We find that our model can be described at a global scale as an infectious transmission process between communities with global infectious and recovery time distributions that depend on the internal structure of each community and $n$. We find that near the critical point as $n$ increases, the disease reaches most of the communities, but each community has only a small fraction of recovered nodes. In addition, we obtain that in the limit $n to infty$, the probability of a pandemic increases abruptly at the critical point. This scenario could make the decision on whether to launch a pandemic alert or not more difficult. Finally, we show that link percolation theory can be used at a global scale to estimate the probability of a pandemic since the global transmissibility between communities has a weak dependence on the global recovery time.
The modeling of the spreading of communicable diseases has experienced significant advances in the last two decades or so. This has been possible due to the proliferation of data and the development of new methods to gather, mine and analyze it. A ke y role has also been played by the latest advances in new disciplines like network science. Nonetheless, current models still lack a faithful representation of all possible heterogeneities and features that can be extracted from data. Here, we bridge a current gap in the mathematical modeling of infectious diseases and develop a framework that allows to account simultaneously for both the connectivity of individuals and the age-structure of the population. We compare different scenarios, namely, i) the homogeneous mixing setting, ii) one in which only the social mixing is taken into account, iii) a setting that considers the connectivity of individuals alone, and finally, iv) a multilayer representation in which both the social mixing and the number of contacts are included in the model. We analytically show that the thresholds obtained for these four scenarios are different. In addition, we conduct extensive numerical simulations and conclude that heterogeneities in the contact network are important for a proper determination of the epidemic threshold, whereas the age-structure plays a bigger role beyond the onset of the outbreak. Altogether, when it comes to evaluate interventions such as vaccination, both sources of individual heterogeneity are important and should be concurrently considered. Our results also provide an indication of the errors incurred in situations in which one cannot access all needed information in terms of connectivity and age of the population.
Mumbai, amongst the most densely populated cities in the world, has witnessed the fourth largest number of cases and the largest number of deaths among all the cities in India (as of 28th October 2020). Along with the rest of India, lockdowns (of var ying degrees) have been in effect in Mumbai since March 25, 2020. Given the large economic toll on the country from the lockdown and the related restrictions on mobility of people and goods, swift opening of the economy especially in a financial hub such as Mumbai becomes critical. In this report, we use the IISc-TIFR agent based simulator to develop long term projections for Mumbai under realistic scenarios related to Mumbais opening of the workplaces, or equivalently, the economy, and the associated public transportation through local trains and buses. These projections were developed taking into account a possible second wave if the economy and the local trains are fully opened either on November 1, 2020 or on January 1, 2021. The impact on infection spread in Mumbai if the schools and colleges open on January first week 2021 is also considered. We also try to account for the increased intermingling amongst the population during the Ganeshotsav festival as well as around the Navratri/Dussehra and Diwali festival. Our conclusion, based on our simulations, is that the impact of fully opening up the economy on November 1 is manageable provided reasonable medical infrastructure is in place. Further, schools and colleges opening in January do not lead to excessive increase in infections. The report also explores the relative effectiveness of contact tracing vs containment zones, and also includes very rudimentary results of the effect of vaccinating the elderly population in February 2021.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا