ﻻ يوجد ملخص باللغة العربية
Identifying the most influential spreaders is important to understand and control the spreading process in a network. As many real-world complex systems can be modeled as multilayer networks, the question of identifying important nodes in multilayer network has attracted much attention. Existing studies focus on the multilayer network structure, while neglecting how the structural and dynamical coupling of multiple layers influence the dynamical importance of nodes in the network. Here we investigate on this question in an information-disease coupled spreading dynamics on multiplex networks. Firstly, we explicitly reveal that three interlayer coupling factors, which are the two-layer relative spreading speed, the interlayer coupling strength and the two-layer degree correlation, significantly impact the spreading influence of a node on the contact layer. The suppression effect from the information layer makes the structural centrality on the contact layer fail to predict the spreading influence of nodes in the multiplex network. Then by mapping the coevolving spreading dynamics into percolation process and using the message-passing approach, we propose a method to calculate the size of the disease outbreaks from a single seed node, which can be used to estimate the nodes spreading influence in the coevolving dynamics. Our work provides insights on the importance of nodes in the multiplex network and gives a feasible framework to investigate influential spreaders in the asymmetrically coevolving dynamics.
Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on social network is a global proce
In the early stage of epidemics, individuals determination on adopting protective measures, which can reduce their risk of infection and suppress disease spreading, is likely to depend on multiple information sources and their mutual confirmation due
Identifying influential spreaders is crucial for understanding and controlling spreading processes on social networks. Via assigning degree-dependent weights onto links associated with the ground node, we proposed a variant to a recent ranking algori
The COVID-19 infection cases have surged globally, causing devastations to both the society and economy. A key factor contributing to the sustained spreading is the presence of a large number of asymptomatic or hidden spreaders, who mix among the sus
Identifying super-spreaders in epidemics is important to suppress the spreading of disease especially when the medical resource is limited.In the modern society, the information on epidemics transmits swiftly through various communication channels wh