ﻻ يوجد ملخص باللغة العربية
We investigate variable-length feedback (VLF) codes for the Gaussian point-to-point channel under maximal power, average error probability, and average decoding time constraints. Our proposed strategy chooses $K < infty$ decoding times $n_1, n_2, dots, n_K$ rather than allowing decoding at any time $n = 0, 1, 2, dots$. We consider stop-feedback, which is one-bit feedback transmitted from the receiver to the transmitter at times $n_1, n_2, ldots$ only to inform her whether to stop. We prove an achievability bound for VLF codes with the asymptotic approximation $ln M approx frac{N C(P)}{1-epsilon} - sqrt{N ln_{(K-1)}(N) frac{V(P)}{1-epsilon}}$, where $ln_{(K)}(cdot)$ denotes the $K$-fold nested logarithm function, $N$ is the average decoding time, and $C(P)$ and $V(P)$ are the capacity and dispersion of the Gaussian channel, respectively. Our achievability bound evaluates a non-asymptotic bound and optimizes the decoding times $n_1, ldots, n_K$ within our code architecture.
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional o
We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few b
Polar codes are a class of {bf structured} channel codes proposed by Ar{i}kan based on the principle of {bf channel polarization}, and can {bf achieve} the symmetric capacity of any Binary-input Discrete Memoryless Channel (B-DMC). The Soft CANcellat
In this paper, we propose capacity-achieving communication schemes for Gaussian finite-state Markov channels (FSMCs) subject to an average channel input power constraint, under the assumption that the transmitters can have access to delayed noiseless
We show that Reed-Muller codes achieve capacity under maximum a posteriori bit decoding for transmission over the binary erasure channel for all rates $0 < R < 1$. The proof is generic and applies to other codes with sufficient amount of symmetry as