ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoding Polar Codes via Weighted-Window Soft Cancellation for Slowly-Varying Channel

154   0   0.0 ( 0 )
 نشر من قبل Yong Fang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yong Fang




اسأل ChatGPT حول البحث

Polar codes are a class of {bf structured} channel codes proposed by Ar{i}kan based on the principle of {bf channel polarization}, and can {bf achieve} the symmetric capacity of any Binary-input Discrete Memoryless Channel (B-DMC). The Soft CANcellation (SCAN) is a {bf low-complexity} {bf iterative} decoding algorithm of polar codes outperforming the widely-used Successive Cancellation (SC). Currently, in most cases, it is assumed that channel state is perfectly {bf known} at the decoder and remains {bf constant} during each codeword, which, however, is usually unrealistic. To decode polar codes for {bf slowly-varying} channel with {bf unknown} state, on the basis of SCAN, we propose the Weighted-Window SCAN (W$^2$SCAN). Initially, the decoder is seeded with a coarse estimate of channel state. Then after {bf each} SCAN iteration, the decoder progressively refines the estimate of channel state with the {bf quadratic programming}. The experimental results prove the significant superiority of W$^2$SCAN to SCAN and SC. In addition, a simple method is proposed to verify the correctness of SCAN decoding which requires neither Cyclic Redundancy Check (CRC) checksum nor Hash digest.



قيم البحث

اقرأ أيضاً

Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-corre ction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear in the block length, the latency of SSC decoding is sublinear. More specifically, the latency of SSC decoding is $O(N^{1-1/mu})$, where $N$ is the block length and $mu$ is the scaling exponent of the channel, which captures the speed of convergence of the rate to capacity. Numerical results demonstrate the tightness of the bound and show that most of the latency reduction arises from the parallel decoding of subcodes of rate $0$ or $1$.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additiona l rounds of SCL decoding when the first SCL decoding attempt fails, using a novel bit-flipping metric. The proposed bit-flipping metric exploits the inherent relations between the information bits in polar codes that are represented by a correlation matrix. The correlation matrix is then optimized using emerging deep-learning techniques. Performance results on a polar code of length 128 with 64 information bits concatenated with a 24-bit cyclic redundancy check show that the proposed bit-flipping metric in the proposed DL-SCL decoder requires up to 66% fewer multiplications and up to 36% fewer additions, without any need to perform transcendental functions, and by providing almost the same error-correction performance in comparison with the state of the art.
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length $1024$ with code rates $1/4$, $1/2$, and $3/4$ show that our proposed algorithm reduces the required clock cycles by up to $8%$, and leads to a $10%$ improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by $57%$ at $mathrm{E_b}/mathrm{N_0} = 5.0$~dB.
The interest in polar codes has been increasing significantly since their adoption for use in the 5$^{rm th}$ generation wireless systems standard. Successive cancellation (SC) decoding algorithm has low implementation complexity, but yields mediocre error-correction performance at the code lengths of interest. SC-Flip algorithm improves the error-correction performance of SC by identifying possibly erroneous decisions made by SC and re-iterates after flipping one bit. It was recently shown that only a portion of bit-channels are most likely to be in error. In this work, we investigate the average log-likelihood ratio (LLR) values and their distribution related to the erroneous bit-channels, and develop the Thresholded SC-Flip (TSCF) decoding algorithm. We also replace the LLR selection and sorting of SC-Flip with a comparator to reduce the implementation complexity. Simulation results demonstrate that for practical code lengths and a wide range of rates, TSCF shows negligible loss compared to the error-correction performance obtained when all single-errors are corrected. At matching maximum iterations, TSCF has an error-correction performance gain of up to $0.45$ dB compared with SC-Flip decoding. At matching error-correction performance, the computational complexity of TSCF is reduced by up to $40%$ on average, and requires up to $5times$ lower maximum number of iterations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا