ﻻ يوجد ملخص باللغة العربية
The rheological properties of cells and tissues are central to embryonic development and homoeostasis in adult tissues and organs and are closely related to their physiological activities. In this work, we present our study of rheological experiments on cell monolayer under serum starvation compared to that of healthy cell monolayer with full serum. The normal functioning of cells depends on the micronutrient supply provided by the serum in the growth media. Serum starvation is one of the most widely used procedures in cell biology. Serum deficiency may lead to genomic instability, variation in protein expression, chronic diseases, and some specific types of cancers. However, the effect of deprivation of serum concentration on the material properties of cells is still unknown. Therefore, we performed the macro-rheology experiments to investigate the effect of serum starvation on a fully confluent Madin Darby Canine Kidney (MDCK) cell monolayer. The material properties such as storage modulus (G) and loss modulus (G), of the monolayer, were measured using oscillatory shear experiments under serum-free (0% FBS) and full serum (10% FBS) conditions. Additionally, the step strain experiments were performed to gain more insights into the viscoelastic properties of the cell monolayer. Our results indicate that without serum, the loss and storage moduli decrease and do not recover fully even after small deformation. This is because of the lack of nutrients, which may result in many permanent physiological changes. Whereas, the healthy cell monolayer under full serum condition, remains strong & flexible, and can fully recover even from a large deformation at higher strain.
We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure
Compared to agile legged animals, wheeled and tracked vehicles often suffer large performance loss on granular surfaces like sand and gravel. Understanding the mechanics of legged locomotion on granular media can aid the development of legged robots
Liquid-liquid phase separation occurs not only in bulk liquid, but also on surfaces. In physiology, the nature and function of condensates on cellular structures remain unexplored. Here, we study how the condensed protein TPX2 behaves on microtubules
We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fraction and viscosity ratio under the assumption of negligible inertia and ze
Sheep are gregarious animals, and they often aggregate into dense, cohesive flocks, especially under stress. In this paper, we use image processing tools to analyze a publicly available aerial video showing a dense sheep flock moving under the stimul