ﻻ يوجد ملخص باللغة العربية
We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure extensional flow of a capillary break-up rheometer. The influence of the viscoelasticity of blood plasma on capillary blood flow is tested in a microfluidic device with a contraction-expansion geometry. Differential pressure measurements revealed that the plasma has a pronounced flow resistance compared to that of pure water. Supplementary measurements indicate that the viscoelasticity of the plasma might even lead to viscoelastic instabilities under certain conditions. Our findings show that the viscoelastic properties of plasma should not be ignored in future studies on blood flow.
The rheological properties of cells and tissues are central to embryonic development and homoeostasis in adult tissues and organs and are closely related to their physiological activities. In this work, we present our study of rheological experiments
We present experiments on RBCs that flow through microcapillaries under physiological conditions. We show that the RBC clusters form as a subtle imbrication between hydrodynamics interaction and adhesion forces because of plasma proteins. Clusters fo
A finite element analysis of flows of an Oldroyd-B fluid is developed, to simulate blood flow in an arteriovenous fistula. The model uses a combination of a standard conforming finite element approximation for the momentum equation, and the discontin
Sheep are gregarious animals, and they often aggregate into dense, cohesive flocks, especially under stress. In this paper, we use image processing tools to analyze a publicly available aerial video showing a dense sheep flock moving under the stimul
In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although cilia have a remarkably conserved internal molecular structure, experimental observations report very diverse kinematics. To address this diversity, we deter