ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to increase matching efficiency in identifying additional b-jets in the $text{t}bar{text{t}}text{b}bar{text{b}}$ process

74   0   0.0 ( 0 )
 نشر من قبل Cheongjae Jang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The $text{t}bar{text{t}}text{H}(text{b}bar{text{b}})$ process is an essential channel to reveal the Higgs properties but has an irreducible background from the $text{t}bar{text{t}}text{b}bar{text{b}}$ process, which produces a top quark pair in association with a b quark pair. Therefore, understanding the $text{t}bar{text{t}}text{b}bar{text{b}}$ process is crucial for improving the sensitivity of a search for the $text{t}bar{text{t}}text{H}(text{b}bar{text{b}})$ process. To this end, when measuring the differential cross-section of the $text{t}bar{text{t}}text{b}bar{text{b}}$ process, we need to distinguish the b-jets originated from top quark decays, and additional b-jets originated from gluon splitting. Since there are no simple identification rules, we adopt deep learning methods to learn from data to identify the additional b-jets from the $text{t}bar{text{t}}text{b}bar{text{b}}$ events. Specifically, by exploiting the special structure of the $text{t}bar{text{t}}text{b}bar{text{b}}$ event data, we propose several loss functions that can be minimized to directly increase the matching efficiency, the accuracy of identifying additional b-jets. We discuss the difference between our method and another deep learning-based approach based on binary classification arXiv:1910.14535 using synthetic data. We then verify that additional b-jets can be identified more accurately by increasing matching efficiency directly rather than the binary classification accuracy, using simulated $text{t}bar{text{t}}text{b}bar{text{b}}$ event data in the lepton+jets channel from pp collision at $sqrt{s}$ = 13 TeV.

قيم البحث

اقرأ أيضاً

We present results of a computation of NLO QCD corrections to the production of an off-shell top--antitop pair in association with an off-shell $text{W}^+$ boson in proton--proton collisions. As the calculation is based on the full matrix elements fo r the process $text{p}text{p}to {text{e}}^+ u_{text{e}},mu^-bar{ u}_mu,tau^+ u_tau,{text{b}},bar{text{b}}$, all off-shell, spin-correlation, and interference effects are included. The NLO QCD corrections are about $20%$ for the integrated cross-section. Using a dynamical scale, the corrections to most distributions are at the same level, while some distributions show much larger $K$-factors in suppressed regions of phase space. We have performed a second calculation based on a double-pole approximation. While the corresponding results agree with the full calculation within few per cent for integrated cross-sections, the discrepancy can reach $10%$ and more in regions of phase space that are not dominated by top--antitop production. As a consequence, on-shell calculations should only be trusted to this level of accuracy.
It has been recently discovered that the $text{T}bar{text{T}}$ deformation is closely-related to Jackiw-Teitelboim gravity. At classical level, the introduction of this perturbation induces an interaction between the stress-energy tensor and space-ti me and the deformed EoMs can be mapped, through a field-dependent change of coordinates, onto the corresponding undeformed ones. The effect of this perturbation on the quantum spectrum is non-perturbatively described by an inhomogeneous Burgers equation. In this paper, we point out that there exist infinite families of models where the geometry couples instead to generic combinations of local conserved currents labelled by the Lorentz spin. In spirit, these generalisations are similar to the $text{J}bar{text{T}}$ model as the resulting theories and the corresponding scattering phase factors are not Lorentz invariant. The link with the $text{J}bar{text{T}}$ model is discussed in detail. While the classical setup described here is very general, we shall use the sine-Gordon model and its CFT limit as explanatory quantum examples. Most of the final equations and considerations are, however, of broader validity or easily generalisable to more complicated systems.
The high luminosity that will be accumulated at the LHC will enable precise differential measurements of the hadronic production of a top--antitop-quark pair in association with a $text{W}$ boson. Therefore, an accurate description of this process is needed for realistic final states. In this work we combine for the first time the NLO QCD and electroweak corrections to the full off-shell $text{t}overline{text{t}}{text{W}}^+$ production at the LHC in the three-charged-lepton channel, including all spin correlations, non-resonant effects, and interferences. To this end, we have computed the NLO electroweak radiative corrections to the leading QCD order as well as the NLO QCD corrections to both the QCD and the electroweak leading orders.
In this work, we preform a systematic investigation about hidden heavy and doubly heavy molecular states from the $D^{(*)}bar{D}^{(*)}/B^{(*)}bar{B}^{(*)}$ and $D^{(*)}D^{(*)}/bar{B}^{(*)}bar{B}^{(*)}$ interactions in the quasipotential Bethe-Salpete r equation (qBSE) approach. With the help of the Lagrangians with heavy quark and chiral symmetries, interaction potentials are constructed within the one-boson-exchange model in which we include the $pi$, $eta$, $rho$, $omega$ and $sigma$ exchanges, as well as $J/psi$ or $Upsilon$ exchange. Possible bound states from the interactions considered are searched for as the pole of scattering amplitude. The results suggest that experimentally observed states, $Z_c(3900)$, $Z_c(4020)$, $Z_b(10610)$, and $Z_b(10650)$, can be related to the $Dbar{D}^{*}$, $D^*bar{D}^{*}$, $Bbar{B}^{*}$, and $B^*bar{B}^{*}$ interactions with quantum numbers $I^G(J^P)=1^+(1^{+})$, respectively. The $Dbar{D}^{*}$ interaction is also attractive enough to produce a pole with $0^+(0^+)$ which is related to the $X(3872)$. Within the same theoretical frame, the existence of $Dbar{D}$ and $Bbar{B}$ molecular states with $0(0^+)$ are predicted. The possible $D^*bar{D}^*$ molecular states with $0(0^+, 1^+, 2^+)$ and $1(0^+)$ and their bottom partners are also suggested by the calculation. In the doubly heavy sector, no bound state is produced from the $DD/bar{B}bar{B}$ interaction while a bound state is found with $0(1^+)$ from $DD^*/bar{B}bar{B}^*$ interaction. The $D^*D^*/bar{B}^*bar{B}^*$ interaction produces three molecular states with $0(1^+)$, $0(2^+)$ and $1(2^+)$.
We study the triple Higgs self-coupling at future $e^{+}e^{-}$ colliders energies, with the reactions $e^{+}e^{-}to b bar b HH$ and $e^{+}e^{-}to t bar t HH$. We evaluate the total cross section of $bbar bHH$, $tbar tHH$ and calculate the total numbe r of events considering the complete set of Feynman diagrams at tree-level. The sensitivity of the triple Higgs coupling is considered in the Higgs mass range 110-190 $GeV$, for the energy which is expected to be available at a possible Next Linear $e^{+}e^{-}$ Collider with a center-of-mass energy $800, 1000, 1500$ $GeV$ and luminosity 1000 $fb^{-1}$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا