ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting hyperlinks via hypernetwork loop structure

97   0   0.0 ( 0 )
 نشر من قبل Liming Pan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

While links in simple networks describe pairwise interactions between nodes, it is necessary to incorporate hypernetworks for modeling complex systems with arbitrary-sized interactions. In this study, we focus on the hyperlink prediction problem in hypernetworks, for which the current state-of-art methods are latent-feature-based. A practical algorithm via topological features, which can provide understandings of the organizational principles of hypernetworks, is still lacking. For simple networks, local clustering or loop reflects the correlations among nodes; therefore, loop-based link prediction algorithms have achieved accurate performance. Extending the idea to hyperlink prediction faces several challenges. For instance, what is an effective way of defining loops for prediction is not clear yet; besides, directly comparing topological statistics of variable-sized hyperlinks could introduce biases in hyperlink cardinality. In this study, we address the issues and propose a loop-based hyperlink prediction approach. First, we discuss and define the loops in hypernetworks; then, we transfer the loop-features into a hyperlink prediction algorithm via a simple modified logistic regression. Numerical experiments on multiple real-world datasets demonstrate superior performance compared to the state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Network dismantling aims to scratch the network into unconnected fragments by removing an optimal set of nodes and has been widely adopted in many real-world applications such as epidemic control and rumor containment. However, conventional methods o ften disassemble the system from the perspective of classic networks, which have only pairwise interactions, and often ignored the more ubiquitous and nature group-wise interactions modeled by hypernetwork. Moreover, a simple network cant describe the collective behavior of multiple objects, it is necessary to solve related problems through hypernetwork dismantling. In this work, we designed a higher order collective influence measure to identify key node sets in hypernetwork. It comprehensively consider the environment in which the target node is located and its own characteristics to determine the importance of the node, so as to dismantle the hypernetwork by removing these selected nodes. Finally, we used the method to carry out a series of real-world hypernetwork dismantling tasks. Experimental results on five real-world hypernetworks demonstrate the effectiveness of our proposed measure.
Empirical estimation of critical points at which complex systems abruptly flip from one state to another is among the remaining challenges in network science. However, due to the stochastic nature of critical transitions it is widely believed that cr itical points are difficult to estimate, and it is even more difficult, if not impossible, to predict the time such transitions occur [1-4]. We analyze a class of decaying dynamical networks experiencing persistent attacks in which the magnitude of the attack is quantified by the probability of an internal failure, and there is some chance that an internal failure will be permanent. When the fraction of active neighbors declines to a critical threshold, cascading failures trigger a network breakdown. For this class of network we find both numerically and analytically that the time to the network breakdown, equivalent to the network lifetime, is inversely dependent upon the magnitude of the attack and logarithmically dependent on the threshold. We analyze how permanent attacks affect dynamical network robustness and use the network lifetime as a measure of dynamical network robustness offering new methodological insight into system dynamics.
People eager to learn about a topic can access Wikipedia to form a preliminary opinion. Despite the solid revision process behind the encyclopedias articles, the users exploration process is still influenced by the hyperlinks network. In this paper, we shed light on this overlooked phenomenon by investigating how articles describing complementary subjects of a topic interconnect, and thus may shape readers exposure to diverging content. To quantify this, we introduce the exposure to diverse information, a metric that captures how users exposure to multiple subjects of a topic varies click-after-click by leveraging navigation models. For the experiments, we collected six topic-induced networks about polarizing topics and analyzed the extent to which their topologies induce readers to examine diverse content. More specifically, we take two sets of articles about opposing stances (e.g., guns control and guns right) and measure the probability that users move within or across the sets, by simulating their behavior via a Wikipedia-tailored model. Our findings show that the networks hinder users to symmetrically explore diverse content. Moreover, on average, the probability that the networks nudge users to remain in a knowledge bubble is up to an order of magnitude higher than that of exploring pages of contrasting subjects. Taken together, those findings return a new and intriguing picture of Wikipedias network structural influence on polarizing issues exploration.
We focus on three aspects of the early spread of a hashtag in order to predict whether it will go viral: the network properties of the subset of users tweeting the hashtag, its geographical properties, and, most importantly, its conductance-related p roperties. One of our significant contributions is to discover the critical role played by the conductance based features for the successful prediction of virality. More specifically, we show that the first derivative of the conductance gives an early indication of whether the hashtag is going to go viral or not. We present a detailed experimental evaluation of the effect of our various categories of features on the virality prediction task. When compared to the baselines and the state of the art techniques proposed in the literature our feature set is able to achieve significantly better accuracy on a large dataset of 7.7 million users and all their tweets over a period of month, as well as on existing datasets.
Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا