ﻻ يوجد ملخص باللغة العربية
Recent research in dynamic convolution shows substantial performance boost for efficient CNNs, due to the adaptive aggregation of K static convolution kernels. It has two limitations: (a) it increases the number of convolutional weights by K-times, and (b) the joint optimization of dynamic attention and static convolution kernels is challenging. In this paper, we revisit it from a new perspective of matrix decomposition and reveal the key issue is that dynamic convolution applies dynamic attention over channel groups after projecting into a higher dimensional latent space. To address this issue, we propose dynamic channel fusion to replace dynamic attention over channel groups. Dynamic channel fusion not only enables significant dimension reduction of the latent space, but also mitigates the joint optimization difficulty. As a result, our method is easier to train and requires significantly fewer parameters without sacrificing accuracy. Source code is at https://github.com/liyunsheng13/dcd.
Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representatio
We propose a new convolution called Dynamic Region-Aware Convolution (DRConv), which can automatically assign multiple filters to corresponding spatial regions where features have similar representation. In this way, DRConv outperforms standard convo
In this paper, a new algorithm for extracting features from sequences of multidimensional observations is presented. The independently developed Dynamic Mode Decomposition and Matrix Pencil methods provide a least-squares model-based approach for est
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution. This enables it to adapt, at inference, to varying feature and object scales. Doing so avoids some pitfalls of bottom up approaches, including a depend
As an essential ingredient of modern deep learning, attention mechanism, especially self-attention, plays a vital role in the global correlation discovery. However, is hand-crafted attention irreplaceable when modeling the global context? Our intrigu