ﻻ يوجد ملخص باللغة العربية
In this paper, a new algorithm for extracting features from sequences of multidimensional observations is presented. The independently developed Dynamic Mode Decomposition and Matrix Pencil methods provide a least-squares model-based approach for estimating complex frequencies present in signals as well as their corresponding amplitudes. Unlike other feature extraction methods such as Fourier Transform or Autoregression which have to be computed for each sequence individually, the least-squares approach considers the whole dataset at once. It invokes order reduction methods to extract a small number of features best describing all given data, and indicate which frequencies correspond to which sequences. As an illustrative example, the new method is applied to regions of different grain orientation in a Transmission Electron Microscopy image.
Recent research in dynamic convolution shows substantial performance boost for efficient CNNs, due to the adaptive aggregation of K static convolution kernels. It has two limitations: (a) it increases the number of convolutional weights by K-times, a
We employ the framework of the Koopman operator and dynamic mode decomposition to devise a computationally cheap and easily implementable method to detect transient dynamics and regime changes in time series. We argue that typically transient dynamic
The Dynamic-Mode Decomposition (DMD) is a well established data-driven method of finding temporally evolving linear-mode decompositions of nonlinear time series. Traditionally, this method presumes that all relevant dimensions are sampled through mea
Dynamic Mode Decomposition (DMD) is a powerful tool for extracting spatial and temporal patterns from multi-dimensional time series, and it has been used successfully in a wide range of fields, including fluid mechanics, robotics, and neuroscience. T
Koopman mode analysis has provided a framework for analysis of nonlinear phenomena across a plethora of fields. Its numerical implementation via Dynamic Mode Decomposition (DMD) has been extensively deployed and improved upon over the last decade. We