ﻻ يوجد ملخص باللغة العربية
Most conversational recommendation approaches are either not explainable, or they require external users knowledge for explaining or their explanations cannot be applied in real time due to computational limitations. In this work, we present a real time category based conversational recommendation approach, which can provide concise explanations without prior user knowledge being required. We first perform an explainable user model in the form of preferences over the items categories, and then use the category preferences to recommend items. The user model is performed by applying a BERT-based neural architecture on the conversation. Then, we translate the user model into item recommendation scores using a Feed Forward Network. User preferences during the conversation in our approach are represented by category vectors which are directly interpretable. The experimental results on the real conversational recommendation dataset ReDial demonstrate comparable performance to the state-of-the-art, while our approach is explainable. We also show the potential power of our framework by involving an oracle setting of category preference prediction.
Conversational search is based on a user-system cooperation with the objective to solve an information-seeking task. In this report, we discuss the implication of such cooperation with the learning perspective from both user and system side. We also
Conversational recommender systems (CRSs) have revolutionized the conventional recommendation paradigm by embracing dialogue agents to dynamically capture the fine-grained user preference. In a typical conversational recommendation scenario, a CRS fi
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate r
Conversational agents (CAs) represent an emerging research field in health information systems, where there are great potentials in empowering patients with timely information and natural language interfaces. Nevertheless, there have been limited att
Explainable artificially intelligent (XAI) systems form part of sociotechnical systems, e.g., human+AI teams tasked with making decisions. Yet, current XAI systems are rarely evaluated by measuring the performance of human+AI teams on actual decision