ﻻ يوجد ملخص باللغة العربية
A sample of 1.3 mm continuum cores in the Dragon infrared dark cloud (also known as G28.37+0.07 or G28.34+0.06) is analyzed statistically. Based on their association with molecular outflows, the sample is divided into protostellar and starless cores. Statistical tests suggest that the protostellar cores are more massive than the starless cores, even after temperature and opacity biases are accounted for. We suggest that the mass difference indicates core mass growth since their formation. The mass growth implies that massive star formation may not have to start with massive prestellar cores, depending on the core mass growth rate. Its impact on the relation between core mass function and stellar initial mass function is to be further explored.
Herein, we present the 12CO (J=1-0) and 13CO (J=1-0) emission line observations via the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) toward a Spitzer bubble N4. We observed clouds of three discrete velocities
G0.253+0.016 is a remarkable massive infrared dark cloud located within $sim$100 pc of the galactic center. With a high mass of $1.3 times 10^5 M_odot$, a compact average radius of $sim$2.8 pc and a low dust temperature of 23 K, it has been believed
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components ha
We present SOFIA-upGREAT observations of [CII] emission of Infrared Dark Cloud (IRDC) G035.39-00.33, designed to trace its atomic gas envelope and thus test models of the origins of such clouds. Several velocity components of [CII] emission are detec