ﻻ يوجد ملخص باللغة العربية
In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method based on real-time evolution for ground and excited state estimation on near-term hardware. We derive the theoretical ground on which the approach stands, and demonstrate that it provides one of the most compact variational expansions to date for solving strongly correlated Hamiltonians. At the center of VQPE lies a set of equations, with a simple geometrical interpretation, which provides conditions for the time evolution grid in order to decouple eigenstates out of the set of time evolved expansion states, and connects the method to the classical filter diagonalization algorithm. Further, we introduce what we call the unitary formulation of VQPE, in which the number of matrix elements that need to be measured scales linearly with the number of expansion states, and we provide an analysis of the effects of noise which substantially improves previous considerations. The unitary formulation allows for a direct comparison to iterative phase estimation. Our results mark VQPE as both a natural and highly efficient quantum algorithm for ground and excited state calculations of general many-body systems. We demonstrate a hardware implementation of VQPE for the transverse field Ising model. Further, we illustrate its power on a paradigmatic example of strong correlation (Cr2 in the SVP basis set), and show that it is possible to reach chemical accuracy with as few as ~50 timesteps.
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent dis
The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processin
Quantum chemistry has been viewed as one of the potential early applications of quantum computing. Two techniques have been proposed for electronic structure calculations: (i) the variational quantum eigensolver and (ii) the phase-estimation algorith
Quantum error correction was invented to allow for fault-tolerant quantum computation. Systems with topological order turned out to give a natural physical realization of quantum error correcting codes (QECC) in their groundspaces. More recently, in
We develop a resource efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state e