ﻻ يوجد ملخص باللغة العربية
With the string melting version of a multiphase transport(AMPT) model, we analyze the transverse momentum dependence of HBT radius $R_{rm s}$ and the single-pion transverse angle distribution in central Au+Au collisions at $sqrt{S_{NN}}=19.6, 27, 39, 62.4, 200$ GeV. And base on a series of functions, a numerical connection between these two phenomena has been built. We can estimate the single-pion transverse angle distribution from the HBT analysis.
Using several source models, we analyze the transverse momentum dependence of HBT radii in the relativistic heavy-ion collisions. The results indicate that the single-particle space-momentum angle distribution plays an important role in the transvers
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently devel
The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametr
The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/$c$ (SPS) and $sqrt{s} = 130$ AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparis