ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic tuning of tunnel coupling between InAsP double quantum dots in InP nanowires

85   0   0.0 ( 0 )
 نشر من قبل Louis Gaudreau
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study experimentally and theoretically the in-plane magnetic field dependence of the coupling between dots forming a vertically stacked double dot molecule. The InAsP molecule is grown epitaxially in an InP nanowire and interrogated optically at millikelvin temperatures. The strength of interdot tunneling, leading to the formation of the bonding-antibonding pair of molecular orbitals, is investigated by adjusting the sample geometry. For specific geometries, we show that the interdot coupling can be controlled in-situ using a magnetic field-mediated redistribution of interdot coupling strengths. This is an important milestone in the development of qubits required in future quantum information technologies.



قيم البحث

اقرأ أيضاً

We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general tr end just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital. Transmission rates versus filling are further modified by acting on the radial configuration of the orbitals by means of electrostatic gating, and the barrier transparency for the various orbitals is found to evolve as expected from numerical simulations. The possibility to exploit this mechanism to achieve a controlled continuous tuning of the tunneling rate of an individual Coulomb blockade resonance is discussed.
299 - David Elvira 2011
The optical properties of single InAsP/InP quantum dots are investigated by spectrally-resolved and time-resolved photoluminescence measurements as a function of excitation power. In the short-wavelength region (below 1.45 $mu$m), the spectra display sharp distinct peaks resulting from the discrete electron-hole states in the dots, while in the long-wavelength range (above 1.45 $mu$m), these sharp peaks lie on a broad spectral background. In both regions, cascade emission observed by time-resolved photoluminescence confirms that the quantum dots possess discrete exciton and multi-exciton states. Single photon emission is reported for the dots emitting at 1.3 $mu$m through anti-bunching measurements.
We have investigated the optical properties of a single InAsP quantum dot embedded in a standing InP nanowire. A regular array of nanowires was fabricated by epitaxial growth and electron-beam patterning. The elongation of transverse exciton spin rel axation time of the exciton state with decreasing excitation power was observed by first-order photon correlation measurements. This behavior is well explained by the motional narrowing mechanism induced by Gaussian fluctuations of environmental charges in the InP nanowire. The longitudinal exciton spin relaxation time was evaluated by the degree of the random polarization of emission originating from exciton state confined in a single nanowire quantum dots by using Mueller Calculus based on Stokes parameters representation.
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energ y renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire size are changed. Drastic changes in the mobility arise with the onset of resonance between the LO-phonons and the separation between valence subbands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا