ﻻ يوجد ملخص باللغة العربية
Relation extraction (RE) plays an important role in extracting knowledge from unstructured text but requires a large amount of labeled corpus. To reduce the expensive annotation efforts, semisupervised learning aims to leverage both labeled and unlabeled data. In this paper, we review and compare three typical methods in semi-supervised RE with deep learning or meta-learning: self-ensembling, which forces consistent under perturbations but may confront insufficient supervision; self-training, which iteratively generates pseudo labels and retrain itself with the enlarged labeled set; dual learning, which leverages a primal task and a dual task to give mutual feedback. Mean-teacher (Tarvainen and Valpola, 2017), LST (Li et al., 2019), and DualRE (Lin et al., 2019) are elaborated as the representatives to alleviate the weakness of these three methods, respectively.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p
In natural language processing, relation extraction seeks to rationally understand unstructured text. Here, we propose a novel SpanBERT-based graph convolutional network (DG-SpanBERT) that extracts semantic features from a raw sentence using the pre-
Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or
Distantly supervised relation extraction (RE) automatically aligns unstructured text with relation instances in a knowledge base (KB). Due to the incompleteness of current KBs, sentences implying certain relations may be annotated as N/A instances, w
The clustering-based unsupervised relation discovery method has gradually become one of the important methods of open relation extraction (OpenRE). However, high-dimensional vectors can encode complex linguistic information which leads to the problem