ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis

198   0   0.0 ( 0 )
 نشر من قبل Ionut-Gabriel Farcas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear micro-instabilities driving turbulent transport in magnetized fusion plasmas (as well as the respective nonlinear saturation mechanisms) are known to be sensitive with respect to various physical parameters characterizing the background plasma and the magnetic equilibrium. Therefore, uncertainty quantification is essential for achieving predictive numerical simulations of plasma turbulence. However, the high computational costs of the required gyrokinetic simulations and the large number of parameters render standard Monte Carlo techniques intractable. To address this problem, we propose a multi-fidelity Monte Carlo approach in which we employ data-driven low-fidelity models that exploit the structure of the underlying problem such as low intrinsic dimension and anisotropic coupling of the stochastic inputs. The low-fidelity models are efficiently constructed via sensitivity-driven dimension-adaptive sparse grid interpolation using both the full set of uncertain inputs and subsets comprising only selected, important parameters. We illustrate the power of this method by applying it to two plasma turbulence problems with up to $14$ stochastic parameters, demonstrating that it is up to four orders of magnitude more efficient than standard Monte Carlo methods measured in single-core performance, which translates into a runtime reduction from around eight days to one hour on 240 cores on parallel machines.

قيم البحث

اقرأ أيضاً

Decision making for dynamic systems is challenging due to the scale and dynamicity of such systems, and it is comprised of decisions at strategic, tactical, and operational levels. One of the most important aspects of decision making is incorporating real time information that reflects immediate status of the system. This type of decision making, which may apply to any dynamic system, needs to comply with the systems current capabilities and calls for a dynamic data driven planning framework. Performance of dynamic data driven planning frameworks relies on the decision making process which in return is relevant to the quality of the available data. This means that the planning framework should be able to set the level of decision making based on the current status of the system, which is learned through the continuous readings of sensory data. In this work, a Markov chain Monte Carlo sampling method is proposed to determine the optimal fidelity of decision making in a dynamic data driven framework. To evaluate the performance of the proposed method, an experiment is conducted, where the impact of workers performance on the production capacity and the fidelity level of decision making are studied.
Numerical models are increasingly used for non-invasive diagnosis and treatment planning in coronary artery disease, where service-based technologies have proven successful in identifying hemodynamically significant and hence potentially dangerous va scular anomalies. Despite recent progress towards clinical adoption, many results in the field are still based on a deterministic characterization of blood flow, with no quantitative assessment of the variability of simulation outputs due to uncertainty from multiple sources. In this study, we focus on parameters that are essential to construct accurate patient-specific representations of the coronary circulation, such as aortic pressure waveform, intramyocardial pressure and quantify how their uncertainty affects clinically relevant model outputs. We construct a deformable model of the left coronary artery subject to a prescribed inlet pressure and with open-loop outlet boundary conditions, treating fluid-structure interaction through an Arbitrary-Lagrangian-Eulerian frame of reference. Random input uncertainty is estimated directly from repeated clinical measurements from intra-coronary catheterization and complemented by literature data. We also achieve significant computational cost reductions in uncertainty propagation thanks to multifidelity Monte Carlo estimators of the outputs of interest, leveraging the ability to generate, at practically no cost, one- and zero-dimensional low-fidelity representations of left coronary artery flow, with appropriate boundary conditions. The results demonstrate how the use of multi-fidelity control variate estimators leads to significant reductions in variance and accuracy improvements with respect to traditional Monte-Carlo.
Conventional frequentist learning, as assumed by existing federated learning protocols, is limited in its ability to quantify uncertainty, incorporate prior knowledge, guide active learning, and enable continual learning. Bayesian learning provides a principled approach to address all these limitations, at the cost of an increase in computational complexity. This paper studies distributed Bayesian learning in a wireless data center setting encompassing a central server and multiple distributed workers. Prior work on wireless distributed learning has focused exclusively on frequentist learning, and has introduced the idea of leveraging uncoded transmission to enable over-the-air computing. Unlike frequentist learning, Bayesian learning aims at evaluating approximations or samples from a global posterior distribution in the model parameter space. This work investigates for the first time the design of distributed one-shot, or embarrassingly parallel, Bayesian learning protocols in wireless data centers via consensus Monte Carlo (CMC). Uncoded transmission is introduced not only as a way to implement over-the-air computing, but also as a mechanism to deploy channel-driven MC sampling: Rather than treating channel noise as a nuisance to be mitigated, channel-driven sampling utilizes channel noise as an integral part of the MC sampling process. A simple wireless CMC scheme is first proposed that is asymptotically optimal under Gaussian local posteriors. Then, for arbitrary local posteriors, a variational optimization strategy is introduced. Simulation results demonstrate that, if properly accounted for, channel noise can indeed contribute to MC sampling and does not necessarily decrease the accuracy level.
Neural networks (NNs) are often used as surrogates or emulators of partial differential equations (PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost of such surrogates renders them an attractive tool for e nsemble-based computation, which requires a large number of repeated PDE solves. Since the latter are also needed to generate sufficient data for NN training, the usefulness of NN-based surrogates hinges on the balance between the training cost and the computational gain stemming from their deployment. We rely on multi-fidelity simulations to reduce the cost of data generation for subsequent training of a deep convolutional NN (CNN) using transfer learning. High- and low-fidelity images are generated by solving PDEs on fine and coarse meshes, respectively. We use theoretical results for multilevel Monte Carlo to guide our choice of the numbers of images of each kind. We demonstrate the performance of this multi-fidelity training strategy on the problem of estimation of the distribution of a quantity of interest, whose dynamics is governed by a system of nonlinear PDEs (parabolic PDEs of multi-phase flow in heterogeneous porous media) with uncertain/random parameters. Our numerical experiments demonstrate that a mixture of a comparatively large number of low-fidelity data and smaller numbers of high- and low-fidelity data provides an optimal balance of computational speed-up and prediction accuracy. The former is reported relative to both CNN training on high-fidelity images only and Monte Carlo solution of the PDEs. The latter is expressed in terms of both the Wasserstein distance and the Kullback-Leibler divergence.
One of the major challenges for low-rank multi-fidelity (MF) approaches is the assumption that low-fidelity (LF) and high-fidelity (HF) models admit similar low-rank kernel representations. Low-rank MF methods have traditionally attempted to exploit low-rank representations of linear kernels, which are kernel functions of the form $K(u,v) = v^T u$ for vectors $u$ and $v$. However, such linear kernels may not be able to capture low-rank behavior, and they may admit LF and HF kernels that are not similar. Such a situation renders a naive approach to low-rank MF procedures ineffective. In this paper, we propose a novel approach for the selection of a near-optimal kernel function for use in low-rank MF methods. The proposed framework is a two-step strategy wherein: (1) hyperparameters of a library of kernel functions are optimized, and (2) a particular combination of the optimized kernels is selected, through either a convex mixture (Additive Kernels) or through a data-driven optimization (Adaptive Kernels). The two resulting methods for this generalized framework both utilize only the available inexpensive low-fidelity data and thus no evaluation of high-fidelity simulation model is needed until a kernel is chosen. These proposed approaches are tested on five non-trivial problems including multi-fidelity surrogate modeling for one- and two-species molecular systems, gravitational many-body problem, associating polymer networks, plasmonic nano-particle arrays, and an incompressible flow in channels with stenosis. The results for these numerical experiments demonstrate the numerical stability efficiency of both proposed kernel function selection procedures, as well as high accuracy of their resultant predictive models for estimation of quantities of interest. Comparisons against standard linear kernel procedures also demonstrate increased accuracy of the optimized kernel approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا