ﻻ يوجد ملخص باللغة العربية
Longitudinal collective modes of a bunched beam with a repulsive inductive impedance (the space charge below transition or the chamber inductance above it) are analytically described by means of reduction of the linearized Vlasov equation to a parameter-less integral equation. For any multipolarity, the discrete part of the spectrum is found to consist of infinite number of modes with real tunes, which limit point is the incoherent zero-amplitude frequency. In other words, notwithstanding the RF bucket nonlinearity and potential well distortion, the Landau damping is lost. Hence, even a tiny coupled-bunch interaction makes the beam unstable; such growth rates for all the modes are analytically obtained for arbitrary multipolarity. In practice, however, the finite threshold of this loss of Landau damping is set either by the high-frequency impedance roll-off or intrabeam scattering. Above the threshold, growth of the leading collective mode should result in persistent nonlinear oscillations.
For a single hadron bunch in a circular accelerator at zero chromaticity, without multi-turn wakes and without electron clouds and other beams, only one transverse collective instability is possible, the mode-coupling instability, or TMCI. For suffic
Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space char
Progress on the Intensity Frontier of high energy physics critically depends on record high intensity charged particles accelerators. Beams in such machines become operationally limited by coherent beam instabilities, particularly enhanced in the reg
The head-tail modes are described for the space charge tune shift significantly exceeding the synchrotron tune. A general equation for the modes is derived. The spatial shapes of the modes, their frequencies, and coherent growth rates are explored. T
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an