ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond $log^2(T)$ Regret for Decentralized Bandits in Matching Markets

79   0   0.0 ( 0 )
 نشر من قبل Soumya Basu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We design decentralized algorithms for regret minimization in the two-sided matching market with one-sided bandit feedback that significantly improves upon the prior works (Liu et al. 2020a, 2020b, Sankararaman et al. 2020). First, for general markets, for any $varepsilon > 0$, we design an algorithm that achieves a $O(log^{1+varepsilon}(T))$ regret to the agent-optimal stable matching, with unknown time horizon $T$, improving upon the $O(log^{2}(T))$ regret achieved in (Liu et al. 2020b). Second, we provide the optimal $Theta(log(T))$ agent-optimal regret for markets satisfying uniqueness consistency -- markets where leaving participants dont alter the original stable matching. Previously, $Theta(log(T))$ regret was achievable (Sankararaman et al. 2020, Liu et al. 2020b) in the much restricted serial dictatorship setting, when all arms have the same preference over the agents. We propose a phase-based algorithm, wherein each phase, besides deleting the globally communicated dominated arms the agents locally delete arms with which they collide often. This local deletion is pivotal in breaking deadlocks arising from rank heterogeneity of agents across arms. We further demonstrate the superiority of our algorithm over existing works through simulations.



قيم البحث

اقرأ أيضاً

We revisit the classic regret-minimization problem in the stochastic multi-armed bandit setting when the arm-distributions are allowed to be heavy-tailed. Regret minimization has been well studied in simpler settings of either bounded support reward distributions or distributions that belong to a single parameter exponential family. We work under the much weaker assumption that the moments of order $(1+epsilon)$ are uniformly bounded by a known constant B, for some given $epsilon > 0$. We propose an optimal algorithm that matches the lower bound exactly in the first-order term. We also give a finite-time bound on its regret. We show that our index concentrates faster than the well known truncated or trimmed empirical mean estimators for the mean of heavy-tailed distributions. Computing our index can be computationally demanding. To address this, we develop a batch-based algorithm that is optimal up to a multiplicative constant depending on the batch size. We hence provide a controlled trade-off between statistical optimality and computational cost.
This paper analyses the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, (Srinivas et al., 2010) proved that the regret vanishes at the approximate rate of $O(frac{1}{sqrt{t}})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-frac{tau t}{(ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and $tau$ is a constant that depends on the behaviour of the objective function near its global maximum.
We study a decentralized cooperative stochastic multi-armed bandit problem with $K$ arms on a network of $N$ agents. In our model, the reward distribution of each arm is the same for each agent and rewards are drawn independently across agents and ti me steps. In each round, each agent chooses an arm to play and subsequently sends a message to her neighbors. The goal is to minimize the overall regret of the entire network. We design a fully decentralized algorithm that uses an accelerated consensus procedure to compute (delayed) estimates of the average of rewards obtained by all the agents for each arm, and then uses an upper confidence bound (UCB) algorithm that accounts for the delay and error of the estimates. We analyze the regret of our algorithm and also provide a lower bound. The regret is bounded by the optimal centralized regret plus a natural and simple term depending on the spectral gap of the communication matrix. Our algorithm is simpler to analyze than those proposed in prior work and it achieves better regret bounds, while requiring less information about the underlying network. It also performs better empirically.
142 - Nando de Freitas 2012
This paper analyzes the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al, 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, Srinivas et al proved that the regret vanishes at the approximate rate of $O(1/sqrt{t})$, where t is the number of observations. To complement their result, we attack the deterministic case and attain a much faster exponential convergence rate. Under some regularity assumptions, we show that the regret decreases asymptotically according to $O(e^{-frac{tau t}{(ln t)^{d/4}}})$ with high probability. Here, d is the dimension of the search space and tau is a constant that depends on the behaviour of the objective function near its global maximum.
We study decentralized stochastic linear bandits, where a network of $N$ agents acts cooperatively to efficiently solve a linear bandit-optimization problem over a $d$-dimensional space. For this problem, we propose DLUCB: a fully decentralized algor ithm that minimizes the cumulative regret over the entire network. At each round of the algorithm each agent chooses its actions following an upper confidence bound (UCB) strategy and agents share information with their immediate neighbors through a carefully designed consensus procedure that repeats over cycles. Our analysis adjusts the duration of these communication cycles ensuring near-optimal regret performance $mathcal{O}(dlog{NT}sqrt{NT})$ at a communication rate of $mathcal{O}(dN^2)$ per round. The structure of the network affects the regret performance via a small additive term - coined the regret of delay - that depends on the spectral gap of the underlying graph. Notably, our results apply to arbitrary network topologies without a requirement for a dedicated agent acting as a server. In consideration of situations with high communication cost, we propose RC-DLUCB: a modification of DLUCB with rare communication among agents. The new algorithm trades off regret performance for a significantly reduced total communication cost of $mathcal{O}(d^3N^{2.5})$ over all $T$ rounds. Finally, we show that our ideas extend naturally to the emerging, albeit more challenging, setting of safe bandits. For the recently studied problem of linear bandits with unknown linear safety constraints, we propose the first safe decentralized algorithm. Our study contributes towards applying bandit techniques in safety-critical distributed systems that repeatedly deal with unknown stochastic environments. We present numerical simulations for various network topologies that corroborate our theoretical findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا