ﻻ يوجد ملخص باللغة العربية
CoV2019 has evolved to be much more dangerous than CoV2003. Experiments suggest that structural rearrangements dramatically enhance CoV2019 activity. We identify a new first stage of infection that precedes structural rearrangements by using biomolecular evolutionary theory to identify sequence differences enhancing viral attachment rates. We find a small cluster of four single mutations which show that CoV-2 has a new feature that promotes much stronger viral attachment and enhances contagiousness. The extremely dangerous dynamics of human coronavirus infection is a dramatic example of evolutionary approach of self-organized networks to criticality. It may favor a very successful vaccine. The identified mutations can be used to test the present theory experimentally. The theory also works well for the newer strains and explains their increased contagiousness.
The coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, has caused 60 millions of infections and 1.38 millions of fatalities. Genomic analysis of SARS-CoV-2 can provide insights on drug design and vaccine development for co
Considering that life on earth evolved about 3.7 billion years ago, vertebrates are young, appearing in the fossil record during the Cambrian explosion about 542 to 515 million years ago. Results from sequence analyses of genomes from bacteria, yeast
Cancer forms a robust system and progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer
Coronavirus (COVID-19) creates fear and uncertainty, hitting the global economy and amplifying the financial markets volatility. The oil price reaction to COVID-19 was gradually accommodated until March 09, 2020, when, 49 days after the release of th
The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affec