ترغب بنشر مسار تعليمي؟ اضغط هنا

Modular co-evolution of metabolic networks

158   0   0.0 ( 0 )
 نشر من قبل Zhao Jing
 تاريخ النشر 2007
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens) metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.



قيم البحث

اقرأ أيضاً

Metabolic networks are known to be scale free but the evolutionary origin of this structural property is not clearly understood. One way of studying the dynamical process is to compare the metabolic networks of species that have arisen at different p oints in evolution and hence are related to each other to varying extents. We have compared the reaction sets of each metabolite across and within 15 groups of species. For a given pair of species and a given metabolite, the number $Delta k$ of reactions of the metabolite that appear in the metabolic network of only one species and not the other is a measure of the distance between the two networks. While $Delta k$ is small within groups of related species and large across groups, we find its probability distribution to be $sim (Delta k)^{-gamma}$ where $gamma$ is a universal exponent that is the same within and across groups. This exponent equals, upto statistical uncertainties, the exponent $gamma$ in the scale free degree distribution $sim k^{-gamma}$. We argue that this, as well as our finding that $Delta k$ is approximately linearly correlated with the degree $k$ of the metabolite, is evidence of a `proportionate change process in evolution. We also discuss some molecular mechanisms that might be responsible for such an evolutionary process.
Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states . This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.
A metabolic model can be represented as bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualisation of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae, and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for the other organisms.
We cast the metabolism of interacting cells within a statistical mechanics framework considering both, the actual phenotypic capacities of each cell and its interaction with its neighbors. Reaction fluxes will be the components of high-dimensional sp in vectors, whose values will be constrained by the stochiometry and the energy requirements of the metabolism. Within this picture, finding the phenotypic states of the population turns out to be equivalent to searching for the equilibrium states of a disordered spin model. We provide a general solution of this problem for arbitrary metabolic networks and interactions. We apply this solution to a simplified model of metabolism and to a complex metabolic network, the central core of the emph{E. coli}, and demonstrate that the combination of selective pressure and interactions define a complex phenotypic space. Cells may specialize in producing or consuming metabolites complementing each other at the population level and this is described by an equilibrium phase space with multiple minima, like in a spin-glass model.
An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory funct ion. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a nonviable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا