ترغب بنشر مسار تعليمي؟ اضغط هنا

H^2-regularity for a two-dimensional transmission problem with geometric constraint

58   0   0.0 ( 0 )
 نشر من قبل Philippe Laurencot
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The H^2-regularity of variational solutions to a two-dimensional transmission problem with geometric constraint is investigated, in particular when part of the interface becomes part of the outer boundary of the domain due to the saturation of the geometric constraint. In such a situation, the domain includes some non-Lipschitz subdomains with cusp points, but it is shown that this feature does not lead to a regularity breakdown. Moreover, continuous dependence of the solutions with respect to the domain is established.

قيم البحث

اقرأ أيضاً

110 - Jinping Zhuge 2020
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf ace and data. Moreover, we prove the uniform Lipschitz estimate across a $C^{1,alpha}$ interface when the coefficients on both sides of the interface are periodic with independent structures and oscillating at different microscopic scales.
We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge.
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffi lani, Takaoka and Tao. A polynomial growth bound for the solution is also given.
49 - Hongjie Dong 2020
We give a simple proof of a recent result in [1] by Caffarelli, Soria-Carro, and Stinga about the $C^{1,alpha}$ regularity of weak solutions to transmission problems with $C^{1,alpha}$ interfaces. Our proof does not use the mean value property or the maximum principle, and also works for more general elliptic systems. Some extensions to $C^{1,text{Dini}}$ interfaces and to domains with multiple sub-domains are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا