ﻻ يوجد ملخص باللغة العربية
We give a simple proof of a recent result in [1] by Caffarelli, Soria-Carro, and Stinga about the $C^{1,alpha}$ regularity of weak solutions to transmission problems with $C^{1,alpha}$ interfaces. Our proof does not use the mean value property or the maximum principle, and also works for more general elliptic systems. Some extensions to $C^{1,text{Dini}}$ interfaces and to domains with multiple sub-domains are also discussed.
In this paper we establish the $C^{2,alpha}$ regularity for free boundary in the optimal transport problem in all dimensions.
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf
We adapt the argument of Dodson-Murphy to give a simple proof of scattering below the ground state for the intercritical inhomogeneous nonlinear Schrodinger equation. The decaying factor in the nonlinearity obviates the need for a radial assumption.
We study the obstacle problem for parabolic operators of the type $partial_t + L$, where $L$ is an elliptic integro-differential operator of order $2s$, such as $(-Delta)^s$, in the supercritical regime $s in (0,frac{1}{2})$. The best result in this
This paper is dedicated to the spectral optimization problem $$ mathrm{min}left{lambda_1^s(Omega)+cdots+lambda_m^s(Omega) + Lambda mathcal{L}_n(Omega)colon Omegasubset D mbox{ s-quasi-open}right} $$ where $Lambda>0, Dsubset mathbb{R}^n$ is a bounded