ﻻ يوجد ملخص باللغة العربية
When building Deep Learning (DL) models, data scientists and software engineers manage the trade-off between their accuracy, or any other suitable success criteria, and their complexity. In an environment with high computational power, a common practice is making the models go deeper by designing more sophisticated architectures. However, in the context of mobile devices, which possess less computational power, keeping complexity under control is a must. In this paper, we study the performance of a system that integrates a DL model as a trade-off between the accuracy and the complexity. At the same time, we relate the complexity to the efficiency of the system. With this, we present a practical study that aims to explore the challenges met when optimizing the performance of DL models becomes a requirement. Concretely, we aim to identify: (i) the most concerning challenges when deploying DL-based software in mobile applications; and (ii) the path for optimizing the performance trade-off. We obtain results that verify many of the identified challenges in the related work such as the availability of frameworks and the software-data dependency. We provide a documentation of our experience when facing the identified challenges together with the discussion of possible solutions to them. Additionally, we implement a solution to the sustainability of the DL models when deployed in order to reduce the severity of other identified challenges. Moreover, we relate the performance trade-off to a new defined challenge featuring the impact of the complexity in the obtained accuracy. Finally, we discuss and motivate future work that aims to provide solutions to the more open challenges found.
Mobile devices are becoming an important carrier for deep learning tasks, as they are being equipped with powerful, high-end mobile CPUs and GPUs. However, it is still a challenging task to execute 3D Convolutional Neural Networks (CNNs) targeting fo
We present diffusion-convolutional neural networks (DCNNs), a new model for graph-structured data. Through the introduction of a diffusion-convolution operation, we show how diffusion-based representations can be learned from graph-structured data an
With the general trend of increasing Convolutional Neural Network (CNN) model sizes, model compression and acceleration techniques have become critical for the deployment of these models on edge devices. In this paper, we provide a comprehensive surv
Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, i
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an excitin