ﻻ يوجد ملخص باللغة العربية
Neural architecture search (NAS) is a hot topic in the field of automated machine learning (AutoML) and has begun to outperform human-designed architectures on many machine learning tasks. Motivated by the natural representation form of neural networks by the Cartesian genetic programming (CGP), we propose an evolutionary approach of NAS based on CGP, called CGPNAS, to solve sentence classification task. To evolve the architectures under the framework of CGP, the existing key operations are identified as the types of function nodes of CGP, and the evolutionary operations are designed based on Evolutionary Strategy (ES). The experimental results show that the searched architecture can reach the accuracy of human-designed architectures, such as Transformer. The transfer study proves that the searched architectures have the certain ability for dataset transfer. The ablation study identifies the Attention function as the single key function node. In addition, only through the linear transformations, the accuracy of the searched architectures is reduced by 4%, worthy of investigation in the future.
In this work, we present a simple and general search space shrinking method, called Angle-Based search space Shrinking (ABS), for Neural Architecture Search (NAS). Our approach progressively simplifies the original search space by dropping unpromisin
Deep Neural Networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labour intensi
A key problem in deep multi-attribute learning is to effectively discover the inter-attribute correlation structures. Typically, the conventional deep multi-attribute learning approaches follow the pipeline of manually designing the network architect
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) f
Most existing swarm pattern formation methods depend on a predefined gene regulatory network (GRN) structure that requires designers priori knowledge, which is difficult to adapt to complex and changeable environments. To dynamically adapt to the com