ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion

220   0   0.0 ( 0 )
 نشر من قبل Shi Qiu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the prominence of current 3D sensors, a fine-grained analysis on the basic point cloud data is worthy of further investigation. Particularly, real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D datas raw nature, it is very challenging for machine perception. In this work, we concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality. On the one hand, to reduce the ambiguity in nearby points, we augment their local context by fully utilizing both geometric and semantic features in a bilateral structure. On the other hand, we comprehensively interpret the distinctness of the points from multiple resolutions and represent the feature map following an adaptive fusion method at point-level for accurate semantic segmentation. Further, we provide specific ablation studies and intuitive visualizations to validate our key modules. By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.



قيم البحث

اقرأ أيضاً

Semantic segmentation requires both rich spatial information and sizeable receptive field. However, modern approaches usually compromise spatial resolution to achieve real-time inference speed, which leads to poor performance. In this paper, we addre ss this dilemma with a novel Bilateral Segmentation Network (BiSeNet). We first design a Spatial Path with a small stride to preserve the spatial information and generate high-resolution features. Meanwhile, a Context Path with a fast downsampling strategy is employed to obtain sufficient receptive field. On top of the two paths, we introduce a new Feature Fusion Module to combine features efficiently. The proposed architecture makes a right balance between the speed and segmentation performance on Cityscapes, CamVid, and COCO-Stuff datasets. Specifically, for a 2048x1024 input, we achieve 68.4% Mean IOU on the Cityscapes test dataset with speed of 105 FPS on one NVIDIA Titan XP card, which is significantly faster than the existing methods with comparable performance.
Real-time semantic segmentation, which can be visually understood as the pixel-level classification task on the input image, currently has broad application prospects, especially in the fast-developing fields of autonomous driving and drone navigatio n. However, the huge burden of calculation together with redundant parameters are still the obstacles to its technological development. In this paper, we propose a Fast Bilateral Symmetrical Network (FBSNet) to alleviate the above challenges. Specifically, FBSNet employs a symmetrical encoder-decoder structure with two branches, semantic information branch, and spatial detail branch. The semantic information branch is the main branch with deep network architecture to acquire the contextual information of the input image and meanwhile acquire sufficient receptive field. While spatial detail branch is a shallow and simple network used to establish local dependencies of each pixel for preserving details, which is essential for restoring the original resolution during the decoding phase. Meanwhile, a feature aggregation module (FAM) is designed to effectively combine the output features of the two branches. The experimental results of Cityscapes and CamVid show that the proposed FBSNet can strike a good balance between accuracy and efficiency. Specifically, it obtains 70.9% and 68.9% mIoU along with the inference speed of 90 fps and 120 fps on these two test datasets, respectively, with only 0.62 million parameters on a single RTX 2080Ti GPU.
The low-level details and high-level semantics are both essential to the semantic segmentation task. However, to speed up the model inference, current approaches almost always sacrifice the low-level details, which leads to a considerable accuracy de crease. We propose to treat these spatial details and categorical semantics separately to achieve high accuracy and high efficiency for realtime semantic segmentation. To this end, we propose an efficient and effective architecture with a good trade-off between speed and accuracy, termed Bilateral Segmentation Network (BiSeNet V2). This architecture involves: (i) a Detail Branch, with wide channels and shallow layers to capture low-level details and generate high-resolution feature representation; (ii) a Semantic Branch, with narrow channels and deep layers to obtain high-level semantic context. The Semantic Branch is lightweight due to reducing the channel capacity and a fast-downsampling strategy. Furthermore, we design a Guided Aggregation Layer to enhance mutual connections and fuse both types of feature representation. Besides, a booster training strategy is designed to improve the segmentation performance without any extra inference cost. Extensive quantitative and qualitative evaluations demonstrate that the proposed architecture performs favourably against a few state-of-the-art real-time semantic segmentation approaches. Specifically, for a 2,048x1,024 input, we achieve 72.6% Mean IoU on the Cityscapes test set with a speed of 156 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods, yet we achieve better segmentation accuracy.
74 - Xi Li , Huimin Ma , Hongbing Ma 2020
Foreground segmentation is an essential task in the field of image understanding. Under unsupervised conditions, different images and instances always have variable expressions, which make it difficult to achieve stable segmentation performance based on fixed rules or single type of feature. In order to solve this problem, the research proposes an unsupervised foreground segmentation method based on semantic-apparent feature fusion (SAFF). Here, we found that key regions of foreground object can be accurately responded via semantic features, while apparent features (represented by saliency and edge) provide richer detailed expression. To combine the advantages of the two type of features, an encoding method for unary region features and binary context features is established, which realizes a comprehensive description of the two types of expressions. Then, a method for adaptive parameter learning is put forward to calculate the most suitable feature weights and generate foreground confidence score map. Furthermore, segmentation network is used to learn foreground common features from different instances. By fusing semantic and apparent features, as well as cascading the modules of intra-image adaptive feature weight learning and inter-image common feature learning, the research achieves performance that significantly exceeds baselines on the PASCAL VOC 2012 dataset.
Deep Convolutional Neural Networks (DCNNs) have recently shown outstanding performance in semantic image segmentation. However, state-of-the-art DCNN-based semantic segmentation methods usually suffer from high computational complexity due to the use of complex network architectures. This greatly limits their applications in the real-world scenarios that require real-time processing. In this paper, we propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes, which achieves a good trade-off between accuracy and speed. Specifically, a Lightweight Baseline Network with Atrous convolution and Attention (LBN-AA) is firstly used as our baseline network to efficiently obtain dense feature maps. Then, the Distinctive Atrous Spatial Pyramid Pooling (DASPP), which exploits the different sizes of pooling operations to encode the rich and distinctive semantic information, is developed to detect objects at multiple scales. Meanwhile, a Spatial detail-Preserving Network (SPN) with shallow convolutional layers is designed to generate high-resolution feature maps preserving the detailed spatial information. Finally, a simple but practical Feature Fusion Network (FFN) is used to effectively combine both shallow and deep features from the semantic branch (DASPP) and the spatial branch (SPN), respectively. Extensive experimental results show that the proposed method respectively achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps on the challenging Cityscapes and CamVid test datasets (by only using a single NVIDIA TITAN X card). This demonstrates that the proposed method offers excellent performance at the real-time speed for semantic segmentation of urban street scenes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا