ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised segmentation via semantic-apparent feature fusion

75   0   0.0 ( 0 )
 نشر من قبل Xi Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Foreground segmentation is an essential task in the field of image understanding. Under unsupervised conditions, different images and instances always have variable expressions, which make it difficult to achieve stable segmentation performance based on fixed rules or single type of feature. In order to solve this problem, the research proposes an unsupervised foreground segmentation method based on semantic-apparent feature fusion (SAFF). Here, we found that key regions of foreground object can be accurately responded via semantic features, while apparent features (represented by saliency and edge) provide richer detailed expression. To combine the advantages of the two type of features, an encoding method for unary region features and binary context features is established, which realizes a comprehensive description of the two types of expressions. Then, a method for adaptive parameter learning is put forward to calculate the most suitable feature weights and generate foreground confidence score map. Furthermore, segmentation network is used to learn foreground common features from different instances. By fusing semantic and apparent features, as well as cascading the modules of intra-image adaptive feature weight learning and inter-image common feature learning, the research achieves performance that significantly exceeds baselines on the PASCAL VOC 2012 dataset.

قيم البحث

اقرأ أيضاً

Scene depth information can help visual information for more accurate semantic segmentation. However, how to effectively integrate multi-modality information into representative features is still an open problem. Most of the existing work uses DCNNs to implicitly fuse multi-modality information. But as the network deepens, some critical distinguishing features may be lost, which reduces the segmentation performance. This work proposes a unified and efficient feature selectionand-fusion network (FSFNet), which contains a symmetric cross-modality residual fusion module used for explicit fusion of multi-modality information. Besides, the network includes a detailed feature propagation module, which is used to maintain low-level detailed information during the forward process of the network. Compared with the state-of-the-art methods, experimental evaluations demonstrate that the proposed model achieves competitive performance on two public datasets.
Autonomous robotic systems and self driving cars rely on accurate perception of their surroundings as the safety of the passengers and pedestrians is the top priority. Semantic segmentation is one the essential components of environmental perception that provides semantic information of the scene. Recently, several methods have been introduced for 3D LiDAR semantic segmentation. While, they can lead to improved performance, they are either afflicted by high computational complexity, therefore are inefficient, or lack fine details of smaller instances. To alleviate this problem, we propose AF2-S3Net, an end-to-end encoder-decoder CNN network for 3D LiDAR semantic segmentation. We present a novel multi-branch attentive feature fusion module in the encoder and a unique adaptive feature selection module with feature map re-weighting in the decoder. Our AF2-S3Net fuses the voxel based learning and point-based learning into a single framework to effectively process the large 3D scene. Our experimental results show that the proposed method outperforms the state-of-the-art approaches on the large-scale SemanticKITTI benchmark, ranking 1st on the competitive public leaderboard competition upon publication.
Powered by the ImageNet dataset, unsupervised learning on large-scale data has made significant advances for classification tasks. There are two major challenges to allow such an attractive learning modality for segmentation tasks: i) a large-scale b enchmark for assessing algorithms is missing; ii) unsupervised shape representation learning is difficult. We propose a new problem of large-scale unsupervised semantic segmentation (LUSS) with a newly created benchmark dataset to track the research progress. Based on the ImageNet dataset, we propose the ImageNet-S dataset with 1.2 million training images and 40k high-quality semantic segmentation annotations for evaluation. Our benchmark has a high data diversity and a clear task objective. We also present a simple yet effective baseline method that works surprisingly well for LUSS. In addition, we benchmark related un/weakly supervised methods accordingly, identifying the challenges and possible directions of LUSS.
Unsupervised Domain Adaptation for semantic segmentation has gained immense popularity since it can transfer knowledge from simulation to real (Sim2Real) by largely cutting out the laborious per pixel labeling efforts at real. In this work, we presen t a new video extension of this task, namely Unsupervised Domain Adaptation for Video Semantic Segmentation. As it became easy to obtain large-scale video labels through simulation, we believe attempting to maximize Sim2Real knowledge transferability is one of the promising directions for resolving the fundamental data-hungry issue in the video. To tackle this new problem, we present a novel two-phase adaptation scheme. In the first step, we exhaustively distill source domain knowledge using supervised loss functions. Simultaneously, video adversarial training (VAT) is employed to align the features from source to target utilizing video context. In the second step, we apply video self-training (VST), focusing only on the target data. To construct robust pseudo labels, we exploit the temporal information in the video, which has been rarely explored in the previous image-based self-training approaches. We set strong baseline scores on VIPER to CityscapeVPS adaptation scenario. We show that our proposals significantly outperform previous image-based UDA methods both on image-level (mIoU) and video-level (VPQ) evaluation metrics.
Given the prominence of current 3D sensors, a fine-grained analysis on the basic point cloud data is worthy of further investigation. Particularly, real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D datas raw nature, it is very challenging for machine perception. In this work, we concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality. On the one hand, to reduce the ambiguity in nearby points, we augment their local context by fully utilizing both geometric and semantic features in a bilateral structure. On the other hand, we comprehensively interpret the distinctness of the points from multiple resolutions and represent the feature map following an adaptive fusion method at point-level for accurate semantic segmentation. Further, we provide specific ablation studies and intuitive visualizations to validate our key modules. By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا