ترغب بنشر مسار تعليمي؟ اضغط هنا

A Reinforcement Learning Based Approach to Play Calling in Football

101   0   0.0 ( 0 )
 نشر من قبل Preston Biro
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

With the vast amount of data collected on football and the growth of computing abilities, many games involving decision choices can be optimized. The underlying rule is the maximization of an expected utility of outcomes and the law of large numbers. The data available allows us to compute with high accuracy the probabilities of outcomes of decisions and the well defined points system in the game allows us to have the necessary terminal utilities. With some well established theory we can then optimize choices at a single play level.

قيم البحث

اقرأ أيضاً

In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance it is crucial to guarantee the safety of an agent during training as well as deployment (e.g. a robot should avoid taking actions - exploratory or not - which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision problems (CMDPs), an extension of the standard Markov decision problems (MDPs) augmented with constraints on expected cumulative costs. Our approach hinges on a novel emph{Lyapunov} method. We define and present a method for constructing Lyapunov functions, which provide an effective way to guarantee the global safety of a behavior policy during training via a set of local, linear constraints. Leveraging these theoretical underpinnings, we show how to use the Lyapunov approach to systematically transform dynamic programming (DP) and RL algorithms into their safe counterparts. To illustrate their effectiveness, we evaluate these algorithms in several CMDP planning and decision-making tasks on a safety benchmark domain. Our results show that our proposed method significantly outperforms existing baselines in balancing constraint satisfaction and performance.
Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner. We introduce the Google Resear ch Football Environment, a new reinforcement learning environment where agents are trained to play football in an advanced, physics-based 3D simulator. The resulting environment is challenging, easy to use and customize, and it is available under a permissive open-source license. In addition, it provides support for multiplayer and multi-agent experiments. We propose three full-game scenarios of varying difficulty with the Football Benchmarks and report baseline results for three commonly used reinforcement algorithms (IMPALA, PPO, and Ape-X DQN). We also provide a diverse set of simpler scenarios with the Football Academy and showcase several promising research directions.
127 - Peng Sun , Jiechao Xiong , Lei Han 2020
Competitive Self-Play (CSP) based Multi-Agent Reinforcement Learning (MARL) has shown phenomenal breakthroughs recently. Strong AIs are achieved for several benchmarks, including Dota 2, Glory of Kings, Quake III, StarCraft II, to name a few. Despite the success, the MARL training is extremely data thirsty, requiring typically billions of (if not trillions of) frames be seen from the environment during training in order for learning a high performance agent. This poses non-trivial difficulties for researchers or engineers and prevents the application of MARL to a broader range of real-world problems. To address this issue, in this manuscript we describe a framework, referred to as TLeague, that aims at large-scale training and implements several main-stream CSP-MARL algorithms. The training can be deployed in either a single machine or a cluster of hybrid machines (CPUs and GPUs), where the standard Kubernetes is supported in a cloud native manner. TLeague achieves a high throughput and a reasonable scale-up when performing distributed training. Thanks to the modular design, it is also easy to extend for solving other multi-agent problems or implementing and verifying MARL algorithms. We present experiments over StarCraft II, ViZDoom and Pommerman to show the efficiency and effectiveness of TLeague. The code is open-sourced and available at https://github.com/tencent-ailab/tleague_projpage
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data. Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms take the approach of constraining or regularizing the policy w ith the actions contained in the dataset. Built on pre-existing RL algorithms, modifications to make an RL algorithm work offline comes at the cost of additional complexity. Offline RL algorithms introduce new hyperparameters and often leverage secondary components such as generative models, while adjusting the underlying RL algorithm. In this paper we aim to make a deep RL algorithm work while making minimal changes. We find that we can match the performance of state-of-the-art offline RL algorithms by simply adding a behavior cloning term to the policy update of an online RL algorithm and normalizing the data. The resulting algorithm is a simple to implement and tune baseline, while more than halving the overall run time by removing the additional computational overheads of previous methods.
128 - Henry Charlesworth 2018
We introduce a new virtual environment for simulating a card game known as Big 2. This is a four-player game of imperfect information with a relatively complicated action space (being allowed to play 1,2,3,4 or 5 card combinations from an initial sta rting hand of 13 cards). As such it poses a challenge for many current reinforcement learning methods. We then use the recently proposed Proximal Policy Optimization algorithm to train a deep neural network to play the game, purely learning via self-play, and find that it is able to reach a level which outperforms amateur human players after only a relatively short amount of training time and without needing to search a tree of future game states.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا