ﻻ يوجد ملخص باللغة العربية
With the mass deployment of computing-intensive applications and delay-sensitive applications on end devices, only adequate computing resources can meet differentiated services delay requirements. By offloading tasks to cloud servers or edge servers, computation offloading can alleviate computing and storage limitations and reduce delay and energy consumption. However, few of the existing offloading schemes take into consideration the cloud-edge collaboration and the constraint of energy consumption and task dependency. This paper builds a collaborative computation offloading model in cloud and edge computing and formulates a multi-objective optimization problem. Constructed by fusing optimal transport and Policy-Based RL, we propose an Optimal-Transport-Based RL approach to resolve the offloading problem and make the optimal offloading decision for minimizing the overall cost of delay and energy consumption. Simulation results show that the proposed approach can effectively reduce the cost and significantly outperforms existing optimization solutions.
As novel applications spring up in future network scenarios, the requirements on network service capabilities for differentiated services or burst services are diverse. Aiming at the research of collaborative computing and resource allocation in edge
Internet of Things (IoT) is considered as the enabling platform for a variety of promising applications, such as smart transportation and smart city, where massive devices are interconnected for data collection and processing. These IoT applications
In remote regions (e.g., mountain and desert), cellular networks are usually sparsely deployed or unavailable. With the appearance of new applications (e.g., industrial automation and environment monitoring) in remote regions, resource-constrained te
For current and future Internet of Things (IoT) networks, mobile edge-cloud computation offloading (MECCO) has been regarded as a promising means to support delay-sensitive IoT applications. However, offloading mobile tasks to the cloud is vulnerable
In intelligent transportation systems (ITS), vehicles are expected to feature with advanced applications and services which demand ultra-high data rates and low-latency communications. For that, the millimeter wave (mmWave) communication has been eme