ﻻ يوجد ملخص باللغة العربية
Though it is well known that the performance of deep neural networks (DNNs) degrades under certain light conditions, there exists no study on the threats of light beams emitted from some physical source as adversarial attacker on DNNs in a real-world scenario. In this work, we show by simply using a laser beam that DNNs are easily fooled. To this end, we propose a novel attack method called Adversarial Laser Beam ($AdvLB$), which enables manipulation of laser beams physical parameters to perform adversarial attack. Experiments demonstrate the effectiveness of our proposed approach in both digital- and physical-settings. We further empirically analyze the evaluation results and reveal that the proposed laser beam attack may lead to some interesting prediction errors of the state-of-the-art DNNs. We envisage that the proposed $AdvLB$ method enriches the current family of adversarial attacks and builds the foundation for future robustness studies for light.
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness and can therefore be easily fooled. Currently, most works on attacking GNNs are mainly using gradient information to guide the
We consider adversarial attacks to a black-box model when no queries are allowed. In this setting, many methods directly attack surrogate models and transfer the obtained adversarial examples to fool the target model. Plenty of previous works investi
Deep learning-based time series models are being extensively utilized in engineering and manufacturing industries for process control and optimization, asset monitoring, diagnostic and predictive maintenance. These models have shown great improvement
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most exist
K-Nearest Neighbor (kNN)-based deep learning methods have been applied to many applications due to their simplicity and geometric interpretability. However, the robustness of kNN-based classification models has not been thoroughly explored and kNN at