ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of the Angular Recoil-Energy Distribution of WIMP-Scattered Target Nuclei for Directional Dark Matter Detection Experiments

94   0   0.0 ( 0 )
 نشر من قبل Chung-Lin Shan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chung-Lin Shan




اسأل ChatGPT حول البحث

In this paper, as the second part of the third step of our study on developing data analysis procedures for using 3-dimensional information offered by directional direct Dark Matter detection experiments in the future, we investigate the angular distributions of the recoil direction (flux) and the recoil energy of the Monte Carlo simulated WIMP-scattered target nuclei observed in different celestial coordinate systems. The anisotropy and the directionality (annual modulation) of the angular recoil-direction/energy distributions will be demonstrated. We will also discuss their dependences on the target nucleus and on the mass of incident halo WIMPs. For readers reference, all simulation plots presented in this paper (and more) can be found in animation on our online (interactive) demonstration webpage (http://www.tir.tw/phys/hep/dm/amidas-2d/).



قيم البحث

اقرأ أيضاً

The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
190 - J. Billard 2012
Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.
141 - Chung-Lin Shan 2019
In this paper, as a preparation of developing data analysis procedures for using 3-dimensional information offered by directional Dark Matter (DM) detection experiments, we study the patterns of the angular distribution of the Monte Carlo-generated 3 -D velocity of halo Weakly Interacting Massive Particles (WIMPs) as well as apply the Bayesian fitting technique to reconstruct the radial distribution of the 3-D WIMP velocity. Besides the diurnal modulation of the angular WIMP velocity distribution, the so-called directionality of DM signals proposed in literature, we will also demonstrate possible annual modulations of both of the angular and the radial distributions of the 3-D WIMP velocity. Our Bayesian reconstruction results of (the annual modulation of) the radial WIMP velocity distribution will also be discussed in detail. For readers reference, the angular distribution patterns of the 3-D WIMP velocity in the laboratory (location)-dependent reference frames of several underground laboratories are given in the Appendix.
Superconducting detectors have been proposed as outstanding targets for the direct detection of light dark matter scattering at masses as low as a keV. We study the prospects for directional detection of dark matter in isotropic superconducting targe ts from the angular distribution of excitations produced in the material. We find that dark matter scattering produces initial excitations with an anisotropic distribution, and further show that this directional information can be preserved as the initial excitations relax. Our results demonstrate that directional detection is possible for a wide range of dark matter masses, and pave the way for light dark matter discovery with bulk superconducting targets.
In this paper I will briefly introduce the idea of using Carbon Nanotubes (CNT) as target for the detection of low mass WIMPs with the additional information of directionality. I will also present the experimental efforts of developing a Time Project ion Chamber with a CNT target inside and the results of a test beam at the Beam Test Facility of INFN-LNF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا