ﻻ يوجد ملخص باللغة العربية
Friedel oscillation is a well-known wave phenomenon, which represents the oscillatory response of electron waves to imperfection. By utilizing the pseudospin-momentum locking in gapless graphene, two recent experiments demonstrate the measurement of the topological Berry phase by corresponding to the unique number of wavefront dislocations in Friedel oscillations. Here, we study the Friedel oscillations in gapped graphene, in which the pseudospin-momentum locking is broken. Unusually, the wavefront dislocations do occur as that in gapless graphene, which expects the immediate verification in the current experimental condition. The number of wavefront dislocations is ascribed to the invariant pseudospin winding number in gaped and gapless graphene. This study deepens the understanding of correspondence between topological quantity and wavefront dislocations in Friedel oscillations, and implies the possibility to observe the wavefront dislocations of Friedel oscillations in intrinsic gapped two-dimensional materials, e.g., transition metal dichalcogenides.
Electronic band structures dictate the mechanical, optical and electrical properties of crystalline solids. Their experimental determination is therefore of crucial importance for technological applications. While the spectral distribution in energy
Two opposite chiralities of Dirac electrons in a 2D graphene sheet modify the Friedel oscillations strongly: electrostatic potential around an impurity in graphene decays much faster than in 2D electron gas. At distances $r$ much larger than the de B
In this paper, the electronic band structures and its transport properties in the gapped graphene superlattices, with one-dimensional (1D) periodic potentials of square barriers, are systematically investigated. It is found that a zero averaged wave-
The Lindhard function represents the basic building block of many-body physics and accounts for charge response, plasmons, screening, Friedel oscillation, RKKY interaction etc. Here we study its non-Hermitian version in one dimension, where quantum e
By exploiting our recently derived exact formula for the Lindhard polarization function in the presence of Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit interaction (SOI), we show that the interplay of different SOI mechanisms induces highly ani