ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Hermitian Lindhard function and Friedel oscillations

91   0   0.0 ( 0 )
 نشر من قبل Bal\\'azs D\\'ora
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Lindhard function represents the basic building block of many-body physics and accounts for charge response, plasmons, screening, Friedel oscillation, RKKY interaction etc. Here we study its non-Hermitian version in one dimension, where quantum effects are traditionally enhanced due to spatial confinement, and analyze its behavior in various limits of interest. Most importantly, we find that the static limit of the non-Hermitian Lindhard function has no divergence at twice the Fermi wavenumber and vanishes identically for all other wavenumbers at zero temperature. Consequently, no Friedel oscillations are induced by a non-Hermitian, imaginary impurity to lowest order in the impurity potential at zero temperature. Our findings are corroborated numerically on a tight-binding ring by switching on a weak real or imaginary potential. We identify conventional Friedel oscillations or heavily suppressed density response, respectively.



قيم البحث

اقرأ أيضاً

Two opposite chiralities of Dirac electrons in a 2D graphene sheet modify the Friedel oscillations strongly: electrostatic potential around an impurity in graphene decays much faster than in 2D electron gas. At distances $r$ much larger than the de B roglie wavelength, it decays as $1/r^3$. Here we show that a weak uniform magnetic field affects the Friedel oscillations in an anomalous way. It creates a field-dependent contribution which is {em dominant} in a parametrically large spatial interval $p_0^{-1}lesssim rlesssim k_Fl^2$, where $l$ is the magnetic length, $k_F$ is Fermi momentum and $p_0^{-1}=(k_Fl)^{4/3}/k_F$. Moreover, in this interval, the field-dependent oscillations do not decay with distance. The effect originates from a spin-dependent magnetic phase accumulated by the electron propagator. The obtained phase may give rise to novel interaction effects in transport and thermodynamic characteristics of graphene and graphene-based heterostructures.
The chiral anomaly underlies a broad number of phenomena, from enhanced electronic transport in topological metals to anomalous currents in the quark-gluon plasma. The discovery of topological states of matter in non-Hermitian systems -- effective de scriptions of dissipative systems -- raises the question of whether there are anomalous conservation laws that remain unaccounted for. To answer this question, we consider both $1+1$ and $3+1$ dimensions, presenting a unified formulation to calculate anomalous responses in Hermitianized, anti-Hermitianized and non-Hermitian systems of massless electrons with complex Fermi velocities coupled to non-Hermitian gauge fields. Our results indicate that the quantum conservation laws of chiral currents of non-Hermitian systems are not related to those in Hermitianized and anti-Hermitianized systems, as would be expected classically, due to novel anomalous terms that we derive. These may have implications for a broad class of emerging experimental systems that realize non-Hermitian Hamiltonians.
140 - Li-Wei Yu , Dong-Ling Deng 2020
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classi fy non-Hermitian topological phases based on diffusion maps, which are widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle, rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the on-site elements of the projective matrix as the input data. Our results provide a valuable guidance for future studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.
We investigate the response of 3D Luttinger semimetals to localized charge and spin impurities as a function of doping. The strong spin-orbit coupling of these materials strongly influences the Friedel oscillations and RKKY interactions. This can be seen at short distances with an $1/r^4$ divergence of the responses, and anisotropic behavior. Certain of the spin-orbital signatures are robust to temperature, even if the charge and spin oscillations are smeared out, and give an unusual diamagnetic Pauli susceptibility. We compare our results to the experimental literature on the bismuth-based half-Heuslers such as YPtBi and on the pyrochlore iridate Pr$_2$Ir$_2$O$_7$.
We consider a 3-dimensional (3D) non-Hermitian exceptional line semimetal model and take open boundary conditions in x, y, and z directions separately. In each case, we calculate the parameter regions where the bulk-boundary correspondence is broken. The breakdown of the bulk-boundary correspondence is manifested by the deviation from unit circles of generalized Brillouin zones (GBZ) and the discrepancy between spectra calculated with open boundary conditions (OBC) and periodic boundary conditions (PBC). The consistency between OBC and PBC spectra can be recovered if the PBC spectra are calculated with GBZs. We use both unit-circle Brillouin zones (BZ) and GBZs to plot the topological phase diagrams. The systematic analysis of the differences between the two phase diagrams suggests that it is necessary to use GBZ to characterize the bulk-boundary correspondence of non-Hermitian models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا