ترغب بنشر مسار تعليمي؟ اضغط هنا

Piecewise linear regression and classification

135   0   0.0 ( 0 )
 نشر من قبل Alberto Bemporad Prof.
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Alberto Bemporad




اسأل ChatGPT حول البحث

This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors over a polyhedral partition of the feature space. The resulting algorithm that we call PARC (Piecewise Affine Regression and Classification) alternates between (i) solving ridge regression problems for numeric targets, softmax regression problems for categorical targets, and either softmax regression or cluster centroid computation for piecewise linear separation, and (ii) assigning the training points to different clusters on the basis of a criterion that balances prediction accuracy and piecewise-linear separability. We prove that PARC is a block-coordinate descent algorithm that optimizes a suitably constructed objective function, and that it converges in a finite number of steps to a local minimum of that function. The accuracy of the algorithm is extensively tested numerically on synthetic and real-world datasets, showing that the approach provides an extension of linear regression/classification that is particularly useful when the obtained predictor is used as part of an optimization model. A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/~bemporad/parc .

قيم البحث

اقرأ أيضاً

In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labeled data. These include data from medical image processing and robotic interaction. Even though each individual task can not be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of $k$ linear regressions, and identify sufficient conditions for such a graceful exchange to hold; The total number of examples necessary with only small data tasks scales similarly as when big data tasks are available. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of $tildeOmega(k^{3/2})$ medium data tasks each with $tildeOmega(k^{1/2})$ examples.
192 - Vera Shalaeva 2019
In this paper, we improve the PAC-Bayesian error bound for linear regression derived in Germain et al. [10]. The improvements are twofold. First, the proposed error bound is tighter, and converges to the generalization loss with a well-chosen tempera ture parameter. Second, the error bound also holds for training data that are not independently sampled. In particular, the error bound applies to certain time series generated by well-known classes of dynamical models, such as ARX models.
Understanding the loss surface of a neural network is fundamentally important to the understanding of deep learning. This paper presents how piecewise linear activation functions substantially shape the loss surfaces of neural networks. We first prov e that {it the loss surfaces of many neural networks have infinite spurious local minima} which are defined as the local minima with higher empirical risks than the global minima. Our result demonstrates that the networks with piecewise linear activations possess substantial differences to the well-studied linear neural networks. This result holds for any neural network with arbitrary depth and arbitrary piecewise linear activation functions (excluding linear functions) under most loss functions in practice. Essentially, the underlying assumptions are consistent with most practical circumstances where the output layer is narrower than any hidden layer. In addition, the loss surface of a neural network with piecewise linear activations is partitioned into multiple smooth and multilinear cells by nondifferentiable boundaries. The constructed spurious local minima are concentrated in one cell as a valley: they are connected with each other by a continuous path, on which empirical risk is invariant. Further for one-hidden-layer networks, we prove that all local minima in a cell constitute an equivalence class; they are concentrated in a valley; and they are all global minima in the cell.
With the dramatic increase of dimensions in the data representation, extracting latent low-dimensional features becomes of the utmost importance for efficient classification. Aiming at the problems of unclear margin representation and difficulty in r evealing the data manifold structure in most of the existing linear discriminant methods, we propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR). In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin. Besides, we formulate a new strategy for enhancing the local intra-class compactness of the data manifold, which can achieve the joint learning of locality-aware graph structure and desirable projection matrix. To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm. Further, forcing the row sparsity on the projection matrix through the L2,1 norm achieves the cooperation of feature selection and feature extraction. Then, we derive an effective iterative algorithm for solving the proposed model. The experimental results over a range of UCI data sets and other benchmark databases demonstrate that the proposed RLAR outperforms some state-of-the-art approaches.
Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and simple. In this paper we analyze ILTS in the setting of mixed linear regression with corruptions (MLR-C). We first establish deterministic conditions (on the features etc.) under which the ILTS iterate converges linearly to the closest mixture component. We also provide a global algorithm that uses ILTS as a subroutine, to fully solve mixed linear regressions with corruptions. We then evaluate it for the widely studied setting of isotropic Gaussian features, and establish that we match or better existing results in terms of sample complexity. Finally, we provide an ODE analysis for a gradient-descent variant of ILTS that has optimal time complexity. Our results provide initial theoretical evidence that iteratively fitting to the best subset of samples -- a potentially widely applicable idea -- can provably provide state of the art performance in bad training data settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا