ﻻ يوجد ملخص باللغة العربية
In this work, using a detailed dataset furnished by National Health Authorities concerning the Province of Pavia (Lombardy, Italy), we propose to determine the essential features of the ongoing COVID-19 pandemic in term of contact dynamics. Our contribution is devoted to provide a possible planning of the needs of medical infrastructures in the Pavia Province and to suggest different scenarios about the vaccination campaign which possibly help in reducing the fatalities and/or reducing the number of infected in the population. The proposed research combines a new mathematical description of the spread of an infectious diseases which takes into account both age and average daily social contacts with a detailed analysis of the dataset of all traced infected individuals in the Province of Pavia. These information are used to develop a data-driven model in which calibration and feeding of the model are extensively used. The epidemiological evolution is obtained by relying on an approach based on statistical mechanics. This leads to study the evolution over time of a system of probability distributions characterizing the age and social contacts of the population. One of the main outcomes shows that, as expected, the spread of the disease is closely related to the mean number of contacts of individuals. The model permits to forecast thanks to an uncertainty quantification approach and in the short time horizon, the average number and the confidence bands of expected hospitalized classified by age and to test different options for an effective vaccination campaign with age-decreasing priority.
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a
In order to analyze the effectiveness of three successive nationwide lockdown enforced in India, we present a data-driven analysis of four key parameters, reducing the transmission rate, restraining the growth rate, flattening the epidemic curve and
In this paper, we introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitativ
The SARS-CoV-2 infectious outbreak has rapidly spread across the globe and precipitated varying policies to effectuate physical distancing to ameliorate its impact. In this study, we propose a new hybrid machine learning model, SIRNet, for forecastin
We show that the COVID-19 pandemic under social distancing exhibits universal dynamics. The cumulative numbers of both infections and deaths quickly cross over from exponential growth at early times to a longer period of power law growth, before even