ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dynamical Framework for Modeling Fear of Infection and Frustration with Social Distancing in COVID-19 Spread

143   0   0.0 ( 0 )
 نشر من قبل Matthew Johnston
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitative behavior---no outbreak, controlled outbreak, and uncontrolled outbreak. We also demonstrate that the model can produce transient and sustained waves of infection consistent with secondary outbreaks. We fit the model to cumulative COVID-19 case and mortality data from several regions. Our analysis suggests that regions which experience a significant decline after the first wave of infection, such as Canada and Israel, are more likely to contain secondary waves of infection, whereas regions which only achieve moderate success in mitigating the diseases spread initially, such as the United States, are likely to experience substantial secondary waves or uncontrolled outbreaks.

قيم البحث

اقرأ أيضاً

We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases tha t may result from loss of immunity--and the exchange of people between regions--and how mortality rates can be ameliorated under different strategic responses. In particular, we consider hard or soft social distancing strategies predicated on national (Federal) or regional (State) estimates of the prevalence of infection in the population. The modelling is demonstrated using timeseries of new cases and deaths from the United States to estimate the parameters of a factorial (compartmental) epidemiological model of each State and, crucially, coupling between States. Using Bayesian model reduction, we identify the effective connectivity between States that best explains the initial phases of the outbreak in the United States. Using the ensuing posterior parameter estimates, we then evaluate the likely outcomes of different policies in terms of mortality, working days lost due to lockdown and demands upon critical care. The provisional results of this modelling suggest that social distancing and loss of immunity are the two key factors that underwrite a return to endemic equilibrium.
The SARS-CoV-2 infectious outbreak has rapidly spread across the globe and precipitated varying policies to effectuate physical distancing to ameliorate its impact. In this study, we propose a new hybrid machine learning model, SIRNet, for forecastin g the spread of the COVID-19 pandemic that couples with the epidemiological models. We use categorized spatiotemporally explicit cellphone mobility data as surrogate markers for physical distancing, along with population weighted density and other local data points. We demonstrate at varying geographical granularity that the spectrum of physical distancing options currently being discussed among policy leaders have epidemiologically significant differences in consequences, ranging from viral extinction to near complete population prevalence. The current mobility inflection points vary across geographical regions. Experimental results from SIRNet establish preliminary bounds on such localized mobility that asymptotically induce containment. The model can support in studying non-pharmacological interventions and approaches that minimize societal collateral damage and control mechanisms for an extended period of time.
69 - Massimo Materassi 2020
Some ideas are presented about the physical motivation of the apparent capacity of generalized logistic equations to describe the outbreak of the COVID-19 infection, and in general of quite many other epidemics. The main focuses here are: the complex , possibly fractal, structure of the locus describing the contagion event set; what can be learnt from the models of trophic webs with herd behaviour.
We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from studen ts. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections.
We show that the COVID-19 pandemic under social distancing exhibits universal dynamics. The cumulative numbers of both infections and deaths quickly cross over from exponential growth at early times to a longer period of power law growth, before even tually slowing. In agreement with a recent statistical forecasting model by the IHME, we show that this dynamics is well described by the erf function. Using this functional form, we perform a data collapse across countries and US states with very different population characteristics and social distancing policies, confirming the universal behavior of the COVID-19 outbreak. We show that the predictive power of statistical models is limited until a few days before curves flatten, forecast deaths and infections assuming current policies continue and compare our predictions to the IHME models. We present simulations showing this universal dynamics is consistent with disease transmission on scale-free networks and random networks with non-Markovian transmission dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا