ﻻ يوجد ملخص باللغة العربية
In this report we present a systematic study of the magnonic modes in the disordered Fe$_{0.5}$Co$_{0.5}$ alloy based on the Heisenberg Hamiltonian using two complementary approaches. In order to account for substitutional disorder, on the one hand we directly average the transverse magnetic susceptibility in real space over different disorder configurations and on the other hand we use the coherent potential approximation (CPA). While the method of direct averaging is numerically exact, it is computationally expensive and limited by the maximal size of the supercell which can be simulated on a computer. On the contrary the CPA does not suffer from this drawback and yields a cheap numerical scheme. Therefore, we additionally compare the results of these two approaches and show that the CPA gives very good results for most of the magnetic properties, including the magnon energies and the spatial shape of the eigenmodes. However, it turns out that while reproducing the general trend, the CPA systematically underestimates the disorder induced damping of the magnons. This provides evidence that the physics of impurity scattering in this system is governed by non-local effects missing in the CPA. Finally, we study the real space eigenmodes of the system, including their spatial shapes, and analyze their temperature dependence within the random phase approximation.
We study theoretically the influence of the temperature and disorder on the spin wave spectrum of the magnonic crystal Fe$_{1-c}$Co$_{c}$. Our formalism is based on the analysis of a Heisenberg Hamiltonian by means of the wave vector and frequency de
Crystal structure prediction is a central problem of theoretical crystallography and materials science, which until mid-2000s was considered intractable. Several methods, based on either energy landscape exploration$^{1,2}$ or, more commonly, global
We have measured directly the thermal conductance between electrons and phonons in ultra-thin Hf and Ti films at millikelvin temperatures. The experimental data indicate that electron-phonon coupling in these films is significantly suppressed by diso
We demonstrate that a weak disorder in atomic positions introduces spatially localized optical modes in a dense three-dimensional ensemble of immobile two-level atoms arranged in a diamond lattice and coupled by the electromagnetic field. The frequen
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point w