ﻻ يوجد ملخص باللغة العربية
Graph Convolutional Networks (GCNs) have received significant attention from various research fields due to the excellent performance in learning graph representations. Although GCN performs well compared with other methods, it still faces challenges. Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs. Therefore, motivated by an urgent need in terms of efficiency and scalability in training GCN, sampling methods have been proposed and achieved a significant effect. In this paper, we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN. To highlight the characteristics and differences of sampling methods, we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories. Finally, we discuss some challenges and future research directions of the sampling methods.
Training Graph Convolutional Networks (GCNs) is expensive as it needs to aggregate data recursively from neighboring nodes. To reduce the computation overhead, previous works have proposed various neighbor sampling methods that estimate the aggregati
Graph convolutional networks (GCNs) have recently received wide attentions, due to their successful applications in different graph tasks and different domains. Training GCNs for a large graph, however, is still a challenge. Original full-batch GCN t
The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on l
Modern machine learning techniques are successfully being adapted to data modeled as graphs. However, many real-world graphs are typically very large and do not fit in memory, often making the problem of training machine learning models on them intra
The performance limit of Graph Convolutional Networks (GCNs) and the fact that we cannot stack more of them to increase the performance, which we usually do for other deep learning paradigms, are pervasively thought to be caused by the limitations of